📄 hhmm_jtree_clqs.m
字号:
% Find out how big the cliques are in an HHMM as a function of depth
% (This is how we get the complexity bound of O(D K^{1.5D}).)
if 0
Qsize = [];
Fsize = [];
Nclqs = [];
end
ds = 1:15;
for d = ds
allQ = 1;
[intra, inter, Qnodes, Fnodes, Onode] = mk_hhmm_topo(d, allQ);
N = length(intra);
ns = 2*ones(1,N);
bnet = mk_dbn(intra, inter, ns);
for i=1:N
bnet.CPD{i} = tabular_CPD(bnet, i);
end
if 0
T = 5;
dag = unroll_dbn_topology(intra, inter, T);
engine = jtree_unrolled_dbn_inf_engine(bnet, T, 'constrained', 1);
S = struct(engine);
S1 = struct(S.sub_engine);
end
engine = jtree_dbn_inf_engine(bnet);
S = struct(engine);
J = S.jtree_struct;
ss = 2*d+1;
Qnodes2 = Qnodes + ss;
QQnodes = [Qnodes Qnodes2];
% find out how many Q nodes in each clique, and how many F nodes
C = length(J.cliques);
Nclqs(d) = 0;
for c=1:C
Qsize(c,d) = length(myintersect(J.cliques{c}, QQnodes));
Fsize(c,d) = length(myintersect(J.cliques{c}, Fnodes));
if length(J.cliques{c}) > 1 % exclude observed leaves
Nclqs(d) = Nclqs(d) + 1;
end
end
%pred_max_Qsize(d) = ceil(d+(d+1)/2);
pred_max_Qsize(d) = ceil(1.5*d);
fprintf('d=%d\n', d);
%fprintf('D=%d, max F = %d. max Q = %d, pred max Q = %d\n', ...
% D, max(Fsize), max(Qsize), ceil(D+(D+1)/2));
%histc(Qsize,1:max(Qsize)) % how many of each size?
end % next d
Q = 2;
pred_mass = ds.*(Q.^ds) + Q.^(ceil(1.5 * ds))
pred_mass2 = Q.^(ceil(1.5 * ds))
for d=ds
mass(d) = 0;
for c=1:C
mass(d) = mass(d) + Q^Qsize(c,d);
end
end
if 0
%plot(ds, max(Qsize), 'o-', ds, pred_max_Qsize, '*--');
%plot(ds, max(Qsize), 'o-', ds, 1.5*ds, '*--');
%plot(ds, mass, 'o-', ds, pred_mass, '*--');
D = 15;
%plot(ds(1:D), mass(1:D), 'bo-', ds(1:D), pred_mass(1:D), 'g*--', ds(1:D), pred_mass2(1:D), 'k+-.');
plot(ds(1:D), log(mass(1:D)), 'bo-', ds(1:D), log(pred_mass(1:D)), 'g*--', ds(1:D), log(pred_mass2(1:D)), 'k+-.');
grid on
xlabel('depth of hierarchy')
title('max num Q nodes in any clique vs. depth')
legend('actual', 'predicted')
%previewfig(gcf, 'width', 3, 'height', 1.5, 'color', 'bw');
%exportfig(gcf, '/home/cs/murphyk/WP/ConferencePapers/HHMM/clqsize2.eps', ...
% 'width', 3, 'height', 1.5, 'color', 'bw');
end
if 0
for d=ds
effnumclqs(d) = length(find(Qsize(:,d)>0));
end
ds = 1:10;
Qs = 2:10;
maxC = size(Qsize, 1);
cost = [];
cost_bound = [];
for qi=1:length(Qs)
Q = Qs(qi);
for d=ds
cost(d,qi) = 0;
for c=1:maxC
if length(Qsize(c,d) > 0) % this clique contains Q nodes
cost(d,qi) = cost(d,qi) + Q^Qsize(c,d)*2^Fsize(c,d);
end
end
%cost_bound(d,qi) = effnumclqs(d) * 8 * Q^(max(Qsize(:,d)));
cost_bound(d,qi) = (effnumclqs(d)*8) + Q^(max(Qsize(:,d)));
end
end
qi=2; plot(ds, cost(:,qi), 'o-', ds, cost_bound(:,qi), '*--');
end
if 0
% convert numbers in cliques into names
for d=1:D
Fdecode(Fnodes(d)) = d;
end
for c=8:15
clqs = J.cliques{c};
fprintf('clique %d: ', c);
for k=clqs
if myismember(k, Qnodes)
fprintf('Q%d ', k)
elseif myismember(k, Fnodes)
fprintf('F%d ', Fdecode(k))
elseif isequal(k, Onode)
fprintf('O ')
elseif myismember(k, Qnodes2)
fprintf('Q%d* ', k-ss)
else
error(['unrecognized node ' k])
end
end
fprintf('\n');
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -