📄 offline_loopy_slam.m
字号:
% We navigate a robot around a square using a fixed control policy and no noise.
% We assume the robot observes the relative distance to the nearest landmark.
% Everything is linear-Gaussian.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Create toy data set
seed = 0;
rand('state', seed);
randn('state', seed);
if 1
T = 20;
ctrl_signal = [repmat([1 0]', 1, T/4) repmat([0 1]', 1, T/4) ...
repmat([-1 0]', 1, T/4) repmat([0 -1]', 1, T/4)];
else
T = 5;
ctrl_signal = repmat([1 0]', 1, T);
end
nlandmarks = 4;
true_landmark_pos = [1 1;
4 1;
4 4;
1 4]';
init_robot_pos = [0 0]';
true_robot_pos = zeros(2, T);
true_data_assoc = zeros(1, T);
true_rel_dist = zeros(2, T);
for t=1:T
if t>1
true_robot_pos(:,t) = true_robot_pos(:,t-1) + ctrl_signal(:,t);
else
true_robot_pos(:,t) = init_robot_pos + ctrl_signal(:,t);
end
nn = argmin(dist2(true_robot_pos(:,t)', true_landmark_pos'));
%nn = t; % observe 1, 2, 3
true_data_assoc(t) = nn;
true_rel_dist(:,t) = true_landmark_pos(:, nn) - true_robot_pos(:,t);
end
figure(1);
%clf;
hold on
%plot(true_landmark_pos(1,:), true_landmark_pos(2,:), '*');
for i=1:nlandmarks
text(true_landmark_pos(1,i), true_landmark_pos(2,i), sprintf('L%d',i));
end
for t=1:T
text(true_robot_pos(1,t), true_robot_pos(2,t), sprintf('%d',t));
end
hold off
axis([-1 6 -1 6])
R = 1e-3*eye(2); % noise added to observation
Q = 1e-3*eye(2); % noise added to robot motion
% Create data set
obs_noise_seq = sample_gaussian([0 0]', R, T)';
obs_rel_pos = true_rel_dist + obs_noise_seq;
%obs_rel_pos = true_rel_dist;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Create params for inference
% X(t) = A X(t-1) + B U(t) + noise(Q)
% [L1] = [1 ] * [L1] + [0] * Ut + [0 ]
% [L2] [ 1 ] [L2] [0] [ 0 ]
% [R ]t [ 1] [R ]t-1 [1] [ Q]
% Y(t)|S(t)=s = C(s) X(t) + noise(R)
% Yt|St=1 = [1 0 -1] * [L1] + R
% [L2]
% [R ]
% Create indices into block structure
bs = 2*ones(1, nlandmarks+1); % sizes of blocks in state space
robot_block = block(nlandmarks+1, bs);
for i=1:nlandmarks
landmark_block(:,i) = block(i, bs)';
end
Xsz = 2*(nlandmarks+1); % 2 values for each landmark plus robot
Ysz = 2; % observe relative location
Usz = 2; % input is (dx, dy)
% create block-diagonal trans matrix for each switch
A = zeros(Xsz, Xsz);
for i=1:nlandmarks
bi = landmark_block(:,i);
A(bi, bi) = eye(2);
end
bi = robot_block;
A(bi, bi) = eye(2);
A = repmat(A, [1 1 nlandmarks]); % same for all switch values
% create block-diagonal system cov
Qbig = zeros(Xsz, Xsz);
bi = robot_block;
Qbig(bi,bi) = Q; % only add noise to robot motion
Qbig = repmat(Qbig, [1 1 nlandmarks]);
% create input matrix
B = zeros(Xsz, Usz);
B(robot_block,:) = eye(2); % only add input to robot position
B = repmat(B, [1 1 nlandmarks]);
% create observation matrix for each value of the switch node
% C(:,:,i) = (0 ... I ... -I) where the I is in the i'th posn.
% This computes L(i) - R
C = zeros(Ysz, Xsz, nlandmarks);
for i=1:nlandmarks
C(:, landmark_block(:,i), i) = eye(2);
C(:, robot_block, i) = -eye(2);
end
% create observation cov for each value of the switch node
Rbig = repmat(R, [1 1 nlandmarks]);
% initial conditions
init_x = zeros(Xsz, 1);
init_v = zeros(Xsz, Xsz);
bi = robot_block;
init_x(bi) = init_robot_pos;
init_V(bi, bi) = 1e-5*eye(2); % very sure of robot posn
for i=1:nlandmarks
bi = landmark_block(:,i);
init_V(bi,bi)= 1e5*eye(2); % very uncertain of landmark psosns
%init_x(bi) = true_landmark_pos(:,i);
%init_V(bi,bi)= 1e-5*eye(2); % very sure of landmark psosns
end
%%%%%%%%%%%%%%%%%%%%%
% Inference
if 1
[xsmooth, Vsmooth] = kalman_smoother(obs_rel_pos, A, C, Qbig, Rbig, init_x, init_V, ...
'model', true_data_assoc, 'u', ctrl_signal, 'B', B);
est_robot_pos = xsmooth(robot_block, :);
est_robot_pos_cov = Vsmooth(robot_block, robot_block, :);
for i=1:nlandmarks
bi = landmark_block(:,i);
est_landmark_pos(:,i) = xsmooth(bi, T);
est_landmark_pos_cov(:,:,i) = Vsmooth(bi, bi, T);
end
end
if 0
figure(1); hold on
for i=1:nlandmarks
h=plotgauss2d(est_landmark_pos(:,i), est_landmark_pos_cov(:,:,i));
set(h, 'color', 'r')
end
hold off
hold on
for t=1:T
h=plotgauss2d(est_robot_pos(:,t), est_robot_pos_cov(:,:,t));
set(h,'color','r')
h=text(est_robot_pos(1,t), est_robot_pos(2,2), sprintf('R%d', t));
set(h,'color','r')
end
hold off
end
if 0
figure(3)
if 0
for t=1:T
imagesc(inv(Vsmooth(:,:,t)))
colorbar
fprintf('t=%d; press key to continue\n', t);
pause
end
else
for t=1:T
subplot(5,4,t)
imagesc(inv(Vsmooth(:,:,t)))
end
end
end
%%%%%%%%%%%%%%%%%
% DBN inference
if 1
[bnet, Unode, Snode, Lnodes, Rnode, Ynode, Lsnode] = ...
mk_gmux_robot_dbn(nlandmarks, Q, R, init_x, init_V, robot_block, landmark_block);
engine = pearl_unrolled_dbn_inf_engine(bnet, 'max_iter', 50, 'filename', ...
'/home/eecs/murphyk/matlab/loopyslam.txt');
else
[bnet, Unode, Snode, Lnodes, Rnode, Ynode] = ...
mk_gmux2_robot_dbn(nlandmarks, Q, R, init_x, init_V, robot_block, landmark_block);
engine = jtree_dbn_inf_engine(bnet);
end
nnodes = bnet.nnodes_per_slice;
evidence = cell(nnodes, T);
evidence(Ynode, :) = num2cell(obs_rel_pos, 1);
evidence(Unode, :) = num2cell(ctrl_signal, 1);
evidence(Snode, :) = num2cell(true_data_assoc);
[engine, ll, niter] = enter_evidence(engine, evidence);
niter
loopy_est_robot_pos = zeros(2, T);
for t=1:T
m = marginal_nodes(engine, Rnode, t);
loopy_est_robot_pos(:,t) = m.mu;
end
for i=1:nlandmarks
m = marginal_nodes(engine, Lnodes(i), T);
loopy_est_landmark_pos(:,i) = m.mu;
loopy_est_landmark_pos_cov(:,:,i) = m.Sigma;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -