📄 mk_gmux_robot_dbn.m
字号:
function [bnet, Unode, Snode, Lnodes, Rnode, Ynode, Lsnode] = ...
mk_gmux_robot_dbn(nlandmarks, Q, R, init_x, init_V, robot_block, landmark_block)
% Make DBN
% S
% | L1 -------> L1'
% | | L2 ----------> L2'
% \ | /
% v v v
% Ls
% |
% v
% Y
% ^
% |
% R -------> R'
% ^
% |
% U
%
%
% S is a switch, Ls is a deterministic gmux, Y = Ls-R,
% R(t+1) = R(t) + U(t+1), L(t+1) = L(t)
% number nodes topologically
Snode = 1;
Lnodes = 2:nlandmarks+1;
Lsnode = nlandmarks+2;
Unode = nlandmarks+3;
Rnode = nlandmarks+4;
Ynode = nlandmarks+5;
nnodes = nlandmarks+5;
intra = zeros(nnodes, nnodes);
intra([Snode Lnodes], Lsnode) =1;
intra(Unode,Rnode)=1;
intra([Rnode Lsnode], Ynode)=1;
inter = zeros(nnodes, nnodes);
inter(Rnode, Rnode)=1;
for i=1:nlandmarks
inter(Lnodes(i), Lnodes(i))=1;
end
Lsz = 2; % (x y) posn of landmark
Rsz = 2; % (x y) posn of robot
Ysz = 2; % relative distance
Usz = 2; % (dx dy) ctrl
Ssz = nlandmarks; % can switch between any landmark
ns = zeros(1,nnodes);
ns(Snode) = Ssz;
ns(Lnodes) = Lsz;
ns(Lsnode) = Lsz;
ns(Ynode) = Ysz;
ns(Rnode) = Rsz;
ns(Ynode) = Usz;
ns(Unode) = Usz;
bnet = mk_dbn(intra, inter, ns, 'discrete', Snode, 'observed', [Snode Ynode Unode]);
bnet.CPD{Snode} = root_CPD(bnet, Snode); % always observed
bnet.CPD{Unode} = root_CPD(bnet, Unode); % always observed
for i=1:nlandmarks
bi = landmark_block(:,i);
bnet.CPD{Lnodes(i)} = gaussian_CPD(bnet, Lnodes(i), 'mean', init_x(bi), 'cov', init_V(bi,bi));
end
bi = robot_block;
bnet.CPD{Rnode} = gaussian_CPD(bnet, Rnode, 'mean', init_x(bi), 'cov', init_V(bi,bi), 'weights', eye(2));
bnet.CPD{Lsnode} = gmux_CPD(bnet, Lsnode, 'cov', repmat(zeros(Lsz,Lsz), [1 1 nlandmarks]), ...
'weights', repmat(eye(Lsz,Lsz), [1 1 nlandmarks]));
W = [eye(2) -eye(2)]; % Y = Ls - R, where Ls is the lower-numbered parent
bnet.CPD{Ynode} = gaussian_CPD(bnet, Ynode, 'mean', zeros(Ysz,1), 'cov', R, 'weights', W);
% slice 2
eclass = bnet.equiv_class;
W = [eye(2) eye(2)]; % R(t) = R(t-1) + U(t), where R(t-1) is the lower-numbered parent
bnet.CPD{eclass(Rnode,2)} = gaussian_CPD(bnet, Rnode+nnodes, 'mean', zeros(Rsz,1), 'cov', Q, 'weights', W);
for i=1:nlandmarks
bnet.CPD{eclass(Lnodes(i), 2)} = gaussian_CPD(bnet, Lnodes(i)+nnodes, 'mean', zeros(2,1), ...
'cov', zeros(2,2), 'weights', eye(2));
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -