📄 mixexp1.m
字号:
% Fit a piece-wise linear regression model.
% Here is the model
%
% X \
% | |
% Q |
% | /
% Y
%
% where all arcs point down.
% We condition everything on X, so X is a root node. Q is a softmax, and Y is a linear Gaussian.
% Q is hidden, X and Y are observed.
X = 1;
Q = 2;
Y = 3;
dag = zeros(3,3);
dag(X,[Q Y]) = 1;
dag(Q,Y) = 1;
ns = [1 2 1]; % make X and Y scalars, and have 2 experts
dnodes = [2];
onodes = [1 3];
bnet = mk_bnet(dag, ns, 'discrete', dnodes, 'observed', onodes);
w = [-5 5]; % w(:,i) is the normal vector to the i'th decisions boundary
b = [0 0]; % b(i) is the offset (bias) to the i'th decisions boundary
mu = [0 0];
sigma = 1;
Sigma = repmat(sigma*eye(ns(Y)), [ns(Y) ns(Y) ns(Q)]);
W = [-1 1];
W2 = reshape(W, [ns(Y) ns(X) ns(Q)]);
bnet.CPD{1} = root_CPD(bnet, 1);
bnet.CPD{2} = softmax_CPD(bnet, 2, w, b);
bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', mu, 'cov', Sigma, 'weights', W2);
% Check inference
x = 0.1;
ystar = 1;
engine = jtree_inf_engine(bnet);
[engine, loglik] = enter_evidence(engine, {x, [], ystar});
Qpost = marginal_nodes(engine, 2);
% eta(i,:) = softmax (gating) params for expert i
eta = [b' w'];
% theta(i,:) = regression vector for expert i
theta = [mu' W'];
% yhat(i) = E[y | Q=i, x] = prediction of i'th expert
x1 = [1 x]';
yhat = theta * x1;
% gate_prior(i,:) = Pr(Q=i | x)
gate_prior = normalise(exp(eta * x1));
% cond_lik(i) = Pr(y | Q=i, x)
cond_lik = (1/(sqrt(2*pi)*sigma)) * exp(-(0.5/sigma^2) * ((ystar - yhat) .* (ystar - yhat)));
% gate_posterior(i,:) = Pr(Q=i | x, y)
[gate_posterior, lik] = normalise(gate_prior .* cond_lik);
assert(approxeq(gate_posterior(:), Qpost.T(:)));
assert(approxeq(log(lik), loglik));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -