📄 qmr2.m
字号:
% Test jtree_compiled on a toy QMR network.
rand('state', 0);
randn('state', 0);
pMax = 0.01;
Nfindings = 10;
Ndiseases = 5;
N=Nfindings+Ndiseases;
findings = Ndiseases+1:N;
diseases = 1:Ndiseases;
G = zeros(Ndiseases, Nfindings);
for i=1:Nfindings
v= rand(1,Ndiseases);
rents = find(v<0.8);
if (length(rents)==0)
rents=ceil(rand(1)*Ndiseases);
end
G(rents,i)=1;
end
prior = pMax*rand(1,Ndiseases);
leak = 0.5*rand(1,Nfindings); % in real QMR, leak approx exp(-0.02) = 0.98
%leak = ones(1,Nfindings); % turns off leaks, which makes inference much harder
inhibit = rand(Ndiseases, Nfindings);
inhibit(not(G)) = 1;
% first half of findings are +ve, second half -ve
% The very first and last findings are hidden
pos = 2:floor(Nfindings/2);
neg = (pos(end)+1):(Nfindings-1);
big = 1;
if big
% Make the bnet in the straightforward way
tabular_leaves = 1;
obs_nodes = myunion(pos, neg) + Ndiseases;
bnet = mk_qmr_bnet(G, inhibit, leak, prior, tabular_leaves, obs_nodes);
evidence = cell(1, N);
evidence(findings(pos)) = num2cell(repmat(2, 1, length(pos)));
evidence(findings(neg)) = num2cell(repmat(1, 1, length(neg)));
else
% Marginalize out hidden leaves apriori
positive_leaves_only = 1;
[bnet, vals] = mk_minimal_qmr_bnet(G, inhibit, leak, prior, pos, neg, positive_leaves_only);
obs_nodes = bnet.observed;
evidence = cell(1, Ndiseases + length(obs_nodes));
evidence(obs_nodes) = num2cell(vals);
end
engine = {};
engine{end+1} = jtree_inf_engine(bnet);
E = length(engine);
exact = 1:E;
ll = zeros(1,E);
for e=1:E
tic; [engine{e}, ll(e)] = enter_evidence(engine{e}, evidence); toc
end
assert(all(approxeq(ll(exact), ll(exact(1)))))
post = zeros(E, Ndiseases);
for e=1:E
for i=diseases(:)'
m = marginal_nodes(engine{e}, i);
post(e, i) = m.T(2);
end
end
for e=exact(:)'
for i=diseases(:)'
assert(approxeq(post(1, i), post(e, i)));
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -