📄 sunspots.asv
字号:
% This demonstration uses the FFT function to analyze the variations in sunspot
% activity over the last 300 years.
% Sunspot activity is cyclical, reaching a maximum about every 11 years. Let's
% confirm that. Here is a plot of a quantity called the Wolfer number, which
% measures both number and size of sunspots. Astronomers have tabulated this
% number for almost 300 years.
load sunspot.dat
year=sunspot(:,1);
wolfer=sunspot(:,2);
plot(year,wolfer)
title('Sunspot Data')
pause
plot(year(1:50),wolfer(1:50),'b.-');
Y = fft(wolfer);
Y(1)=[];
plot(Y,'ro')
title('Fourier Coefficients in the Complex Plane');
xlabel('Real Axis');
ylabel('Imaginary Axis');
%%
% The complex magnitude squared of Y is called the power, and a plot of power
% versus frequency is a "periodogram".
n=length(Y);
power = abs(Y(1:n/2)).^2;
nyquist = 1/2;
freq = (1:n/2)/(n/2)*nyquist;
plot(freq,power)
xlabel('cycles/year')
title('Periodogram')
%%
% The scale in cycles/year is somewhat inconvenient. We can plot in years/cycle
% and esimate the length of one cycle.
plot(freq(1:40),power(1:40))
xlabel('cycles/year')
%%
% Now we plot power versus period for convenience (where period=1./freq). As
% expected, there is a very prominent cycle with a length of about 11 years.
period=1./freq;
plot(period,power);
axis([0 40 0 2e+7]);
ylabel('Power');
xlabel('Period (Years/Cycle)');
%%
% Finally, we can fix the cycle length a little more precisely by picking out
% the strongest frequency. The red dot locates this point.
hold on;
index=find(power==max(power));
mainPeriodStr=num2str(period(index));
plot(period(index),power(index),'r.', 'MarkerSize',25);
text(period(index)+2,power(index),['Period = ',mainPeriodStr]);
hold off;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -