📄 kerskfmat.m
字号:
function [Alpha,bias,sol,t,flps,margin,up,lo]=... kerskfmat(X,I,epsilon,ker,arg,tmax,C)% KERSKFMAT fast version of KERNELSK. % [Alpha,bias,sol,t,flps,margin,up,lo]=kerskfmat(X,I,epsilon,ker,arg,tmax,C)%% Faster version (with respect to number of floating point operations) % of KERNELSK algorithm. It does not compute the whole kernel matrix.% % Inputs:% X [NxL] training patterns, N is dimension and L number of patterns.% I [1xL] labels, 1 for 1st class and 2 for 2nd class.% epsilon [1x1] precision of found solution. The margin of found % hyperplane is less than the optimal margin at most by epsilon. % ker [string] kernel, see 'help kernel'.% arg [...] argument of given kernel, see 'help kernel'.% tmax [int] maximal number of iterations.% C [real] trade-off between margin and training error.% % Outputs:% Alpha [1xL] Weights (Lagrangians) of patterns.% bias [real] bias (threshold) of found decision rule.% sol [int] 1 solution is found% 0 algorithm stoped (t == tmax) before converged.% -1 hyperplane with margin greater then epsilon % does not exist.% t [int] number of iterations.% margin [real] margin between classes.% flps [int] number of used floating point operations.% up [1,t] evolution of the upper bound on the optimal margin.% lo [1,t] evolution of the lower bound on the optimal margin.% CE [real] classification error on training patterns.%% See also KERNELSK, SVM.%% Statistical Pattern Recognition Toolbox, Vojtech Franc, Vaclav Hlavac% (c) Czech Technical University Prague, http://cmp.felk.cvut.cz% Written Vojtech Franc (diploma thesis) 02.11.1999, 13.4.2000% Modifications% 19-September-2001, V.Franc, comments changed.% 18-August-2001, V.Franc, up and lo bounds added% 9-August-2001, V.Franc, version without computing kernel matrices% 13-July-2001, V.Franc, comments% 12-July-2001, V.Franc, C, bias and normal vect. normalized.% 11-July-2001, V.Franc, Rosta Horcik proved that the computation % of threshold is OK.% 10-July-2001, V.Franc, derived from kekozinec2flops(0);% set default values of the input argimentsif nargin < 7, C = inf;end% maximal number of iteraionsif nargin < 6, tmax = inf;end% indexes of pattens in the 1st and 2nd classxinx1 = find(I == 1);xinx2 = find(I == 2);X1=X(:,xinx1); % patters from 1st classX2=X(:,xinx2); % patters from 1st classl1 = size(X1,2); % number os patternsl2 = size(X2,2);% make problem lin-separable in high dimensional spaceif C ~= 0, kadd = 1/(2*C);else kadd = 0;end% convex coeficients defining normal of the decision hyperplane% (they correspond to the Lagrangian multiplyers).s1 = zeros(l1, 1);s2 = zeros(l2, 1);% initial sols1(1)=1; % take the 1st pattern from the 1st classs2(1)=1; % take the 2nd pattern from the 2st classsol=0;t = 0;minXDA1=-inf;minXDA2=-inf;% -- Inicalization of temp. variables ---------------------------------Di1 = zeros(l1,1);Fi1 = zeros(l1,1);for i=1:l1, Di1(i) = kernel(X1(:,1),X1(:,i), ker,arg); Fi1(i) = kernel(X2(:,1),X1(:,i), ker,arg);endDi1(1) = Di1(1) + kadd;
Di2 = zeros(l2,1);Fi2 = zeros(l2,1);for i=1:l2, Di2(i) = kernel(X1(:,1),X2(:,i), ker,arg); Fi2(i) = kernel(X2(:,1),X2(:,i), ker,arg);endFi2(1) = Fi2(1)+kadd;
a = kernel(X1(:,1),X1(:,1),ker,arg) + kadd;b = kernel(X2(:,1),X2(:,1),ker,arg) + kadd;c = kernel(X1(:,1),X2(:,1),ker,arg );
% upper and lower bounds on the optimal marginup=[];lo=[];% main cyclewhile sol == 0 & tmax > t, t = t + 1; sol = 1; % -- compute auxciliary variables -- if sqrt( a -2*c +b) <= 0, % algorithm has converged to the zero vector --> classes overlap sol = -1; break; end [emin,inx1] = min(Di1-Fi1); [gmin,inx2] = min(Fi2-Di2); % projection x \in X_1 on (w_1 - w_2) proj1 = (emin + b -c )/sqrt(a-2*c+b); % projection x \in X_2 on (w_2 - w_1) proj2 = (gmin + a - c)/sqrt(a-2*c+b); % --- compute stop condition for the alpha1 (1st class) ------ % (proj1 < proj2) ~ the worst point will be used for update if (proj1 < proj2) & (proj1 <= (sqrt(a-2*c+b) - epsilon)), % -- Adaptation phase of vector alpha1 ---------------------------- k = (a - emin - c)/... (a+kernel(X1(:,inx1),X1(:,inx1),ker,arg)+kadd-2*(Di1(inx1)-Fi1(inx1)) ); k = min( 1, k ); s1 = s1 * (1-k); s1(inx1) = s1(inx1) + k; sol = 0; % ------------------------------------------------------------- a = a*(1-k)^2 + 2*(1-k)*k*Di1(inx1) + ... k^2 * (kernel(X1(:,inx1),X1(:,inx1),ker,arg)+kadd ); c = c*(1-k) + k*Fi1(inx1); for i=1:l1, Di1(i) = Di1(i)*(1-k) + k*kernel(X1(:,i),X1(:,inx1),ker,arg); end Di1(inx1) = Di1(inx1) + k*kadd; for i=1:l2, Di2(i) = Di2(i)*(1-k) + k*kernel(X2(:,i),X1(:,inx1),ker,arg); end else % --- compute stop condition for the alpha2 (2st class) ------ if proj2 <= (sqrt(a-2*c+b) - epsilon ), % -- Adaptation phase ---------------------------------- k = (b - gmin -c)/... (b+kernel(X2(:,inx2),X2(:,inx2),ker,arg)+kadd-2*(Fi2(inx2)-Di2(inx2))); k = min( 1, k ); s2 = s2 * (1-k); s2(inx2) = s2(inx2) + k; sol = 0; % ------------------------------------------------------ b = b*(1-k)^2 + 2*(1-k)*k*Fi2(inx2) + ... k^2 * (kernel(X2(:,inx2),X2(:,inx2),ker,arg)+kadd ); c = c*(1-k) + k*Di2(inx2); for i=1:l1, Fi1(i) = (1-k)*Fi1(i) + k*kernel(X2(:,inx2),X1(:,i),ker,arg); end for i=1:l2, Fi2(i) = (1-k)*Fi2(i) + k*kernel(X2(:,inx2),X2(:,i),ker,arg); end Fi2(inx2) = Fi2(inx2) + k*kadd; end end % store up=||w||/2 and current margin m(w1-w2,theta) = min( m1, m2) m = min([proj1,proj2]) - 0.5*sqrt(a-2*c+b); up = [up,sqrt(a-2*c+b)/2]; lo = [lo,m ]; %% disp(sprintf('step = %d', t )); end
if sol == 1 & (proj1 < 0 | proj2 < 0), sol = -2;
end% -- compute threshold -----------------------% sqared margin in transfromed spacemargin2 = a - 2*c + b;% threshold after normalizationtheta = (a-b)/margin2;% solution (normal vect. in the transformed space) after normalizations1=2*s1/margin2;s2=2*s2/margin2;% -- make SVM-like output --------------------Alpha=zeros(1,l1+l2);Alpha(xinx1)=s1;Alpha(xinx2)=s2;bias = -theta;% -- compute margin -----------------------------------if nargout >= 6, margin = 0; for i=find(Alpha ~= 0), for j=find(Alpha ~= 0 ), margin = margin + Alpha(i)*Alpha(j)*itosgn(I(i))*... itosgn(I(j))* kernel(X(:,i),X(:,j),ker,arg); end end margin = 2/sqrt(margin);end% overall number of used float point operationsflps=flops;return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -