📄 pgtable.h
字号:
#ifndef _M68K_PGTABLE_H
#define _M68K_PGTABLE_H
#ifndef __ASSEMBLY__
/*
* This file contains the functions and defines necessary to modify and use
* the m68k page table tree.
*/
#define __flush_tlb() \
do { \
if (m68k_is040or060) \
__asm__ __volatile__(".word 0xf510\n"::); /* pflushan */ \
else \
__asm__ __volatile__("pflusha\n"::); \
} while (0)
static inline void __flush_tlb_one(unsigned long addr)
{
if (m68k_is040or060) {
register unsigned long a0 __asm__ ("a0") = addr;
__asm__ __volatile__(".word 0xf508" /* pflush (%a0) */
: : "a" (a0));
} else
__asm__ __volatile__("pflush #0,#0,(%0)" : : "a" (addr));
}
#define flush_tlb() __flush_tlb()
#define flush_tlb_all() flush_tlb()
static inline void flush_tlb_mm(struct mm_struct *mm)
{
if (mm == current->mm)
__flush_tlb();
}
static inline void flush_tlb_page(struct vm_area_struct *vma,
unsigned long addr)
{
if (vma->vm_mm == current->mm)
__flush_tlb_one(addr);
}
static inline void flush_tlb_range(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
if (mm == current->mm)
__flush_tlb();
}
/* Certain architectures need to do special things when pte's
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
/* PMD_SHIFT determines the size of the area a second-level page table can map */
#define PMD_SHIFT 22
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT 25
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* entries per page directory level: the m68k is configured as three-level,
* so we do have PMD level physically.
*/
#define PTRS_PER_PTE 1024
#define PTRS_PER_PMD 8
#define PTRS_PER_PGD 128
/* the no. of pointers that fit on a page: this will go away */
#define PTRS_PER_PAGE (PAGE_SIZE/sizeof(void*))
typedef pgd_t pgd_table[PTRS_PER_PGD];
typedef pmd_t pmd_table[PTRS_PER_PMD];
typedef pte_t pte_table[PTRS_PER_PTE];
#define PGD_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pgd_table))
#define PMD_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pmd_table))
#define PTE_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pte_table))
typedef pgd_table pgd_tablepage[PGD_TABLES_PER_PAGE];
typedef pmd_table pmd_tablepage[PMD_TABLES_PER_PAGE];
typedef pte_table pte_tablepage[PTE_TABLES_PER_PAGE];
/* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 8MB value just means that there will be a 8MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*/
#define VMALLOC_OFFSET (8*1024*1024)
#define VMALLOC_START ((high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#endif /* __ASSEMBLY__ */
/*
* Definitions for MMU descriptors
*/
#define _PAGE_PRESENT 0x001
#define _PAGE_SHORT 0x002
#define _PAGE_RONLY 0x004
#define _PAGE_ACCESSED 0x008
#define _PAGE_DIRTY 0x010
#define _PAGE_GLOBAL040 0x400 /* 68040 global bit, used for kva descs */
#define _PAGE_COW 0x800 /* implemented in software */
#define _PAGE_NOCACHE030 0x040 /* 68030 no-cache mode */
#define _PAGE_NOCACHE 0x060 /* 68040 cache mode, non-serialized */
#define _PAGE_NOCACHE_S 0x040 /* 68040 no-cache mode, serialized */
#define _PAGE_CACHE040 0x020 /* 68040 cache mode, cachable, copyback */
#define _PAGE_CACHE040W 0x000 /* 68040 cache mode, cachable, write-through */
#define _DESCTYPE_MASK 0x003
#define _CACHEMASK040 (~0x060)
#define _TABLE_MASK (0xfffffff0)
#define _PAGE_TABLE (_PAGE_SHORT)
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_NOCACHE)
#ifndef __ASSEMBLY__
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | _PAGE_CACHE040)
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_CACHE040)
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | _PAGE_CACHE040)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | _PAGE_CACHE040)
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_CACHE040)
/*
* The m68k can't do page protection for execute, and considers that the same are read.
* Also, write permissions imply read permissions. This is the closest we can get..
*/
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_COPY
#define __P011 PAGE_COPY
#define __P100 PAGE_READONLY
#define __P101 PAGE_READONLY
#define __P110 PAGE_COPY
#define __P111 PAGE_COPY
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED
#define __S011 PAGE_SHARED
#define __S100 PAGE_READONLY
#define __S101 PAGE_READONLY
#define __S110 PAGE_SHARED
#define __S111 PAGE_SHARED
/* zero page used for uninitialized stuff */
extern unsigned long empty_zero_page;
/*
* BAD_PAGETABLE is used when we need a bogus page-table, while
* BAD_PAGE is used for a bogus page.
*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern pte_t __bad_page(void);
extern pte_t * __bad_pagetable(void);
#define BAD_PAGETABLE __bad_pagetable()
#define BAD_PAGE __bad_page()
#define ZERO_PAGE empty_zero_page
/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR (8*sizeof(unsigned long))
/* to align the pointer to a pointer address */
#define PTR_MASK (~(sizeof(void*)-1))
/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
/* 64-bit machines, beware! SRB. */
#define SIZEOF_PTR_LOG2 2
/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
extern unsigned long high_memory;
/* For virtual address to physical address conversion */
extern unsigned long mm_vtop(unsigned long addr) __attribute__ ((const));
extern unsigned long mm_ptov(unsigned long addr) __attribute__ ((const));
#define VTOP(addr) (mm_vtop((unsigned long)(addr)))
#define PTOV(addr) (mm_ptov((unsigned long)(addr)))
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot)
{ pte_t pte; pte_val(pte) = VTOP(page) | pgprot_val(pgprot); return pte; }
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
{
int i;
ptep = (pte_t *) VTOP(ptep);
for (i = 0; i < 16; i++, ptep += PTRS_PER_PTE/16)
pmdp->pmd[i] = _PAGE_TABLE | (unsigned long)ptep;
}
/* early termination version of the above */
extern inline void pmd_set_et(pmd_t * pmdp, pte_t * ptep)
{
int i;
ptep = (pte_t *) VTOP(ptep);
for (i = 0; i < 16; i++, ptep += PTRS_PER_PTE/16)
pmdp->pmd[i] = _PAGE_PRESENT | (unsigned long)ptep;
}
extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp)
{ pgd_val(*pgdp) = _PAGE_TABLE | VTOP(pmdp); }
extern inline unsigned long pte_page(pte_t pte)
{ return PTOV(pte_val(pte) & PAGE_MASK); }
extern inline unsigned long pmd_page2(pmd_t *pmd)
{ return PTOV(pmd_val(*pmd) & _TABLE_MASK); }
#define pmd_page(pmd) pmd_page2(&(pmd))
extern inline unsigned long pgd_page(pgd_t pgd)
{ return PTOV(pgd_val(pgd) & _TABLE_MASK); }
extern inline int pte_none(pte_t pte) { return !pte_val(pte); }
extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; }
extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; }
extern inline int pmd_none2(pmd_t *pmd) { return !pmd_val(*pmd); }
#define pmd_none(pmd) pmd_none2(&(pmd))
extern inline int pmd_bad2(pmd_t *pmd) { return (pmd_val(*pmd) & _DESCTYPE_MASK) != _PAGE_TABLE || pmd_page(*pmd) > high_memory; }
#define pmd_bad(pmd) pmd_bad2(&(pmd))
extern inline int pmd_present2(pmd_t *pmd) { return pmd_val(*pmd) & _PAGE_TABLE; }
#define pmd_present(pmd) pmd_present2(&(pmd))
extern inline void pmd_clear(pmd_t * pmdp)
{
short i;
for (i = 15; i >= 0; i--)
pmdp->pmd[i] = 0;
}
extern inline int pgd_none(pgd_t pgd) { return !pgd_val(pgd); }
extern inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & _DESCTYPE_MASK) != _PAGE_TABLE || pgd_page(pgd) > high_memory; }
extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) & _PAGE_TABLE; }
extern inline void pgd_clear(pgd_t * pgdp) { pgd_val(*pgdp) = 0; }
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
extern inline int pte_read(pte_t pte) { return 1; }
extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_RONLY); }
extern inline int pte_exec(pte_t pte) { return 1; }
extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_RONLY; return pte; }
extern inline pte_t pte_rdprotect(pte_t pte) { return pte; }
extern inline pte_t pte_exprotect(pte_t pte) { return pte; }
extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_RONLY; return pte; }
extern inline pte_t pte_mkread(pte_t pte) { return pte; }
extern inline pte_t pte_mkexec(pte_t pte) { return pte; }
extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
extern inline pte_t pte_mknocache(pte_t pte)
{
pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | m68k_pgtable_cachemode;
return pte;
}
extern inline pte_t pte_mkcache(pte_t pte) { pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | _PAGE_CACHE040; return pte; }
/* to set the page-dir */
extern inline void SET_PAGE_DIR(struct task_struct * tsk, pgd_t * pgdir)
{
tsk->tss.pagedir_v = (unsigned long *)pgdir;
tsk->tss.pagedir_p = VTOP(pgdir);
tsk->tss.crp[0] = 0x80000000 | _PAGE_SHORT;
tsk->tss.crp[1] = tsk->tss.pagedir_p;
if (tsk == current) {
if (m68k_is040or060)
__asm__ __volatile__ (".word 0xf510\n\t" /* pflushan */
"movel %0@,%/d0\n\t"
".long 0x4e7b0806\n\t"
/* movec d0,urp */
: : "a" (&tsk->tss.crp[1])
: "d0");
else
__asm__ __volatile__ ("movec %/cacr,%/d0\n\t"
"oriw #0x0808,%/d0\n\t"
"movec %/d0,%/cacr\n\t"
"pmove %0@,%/crp\n\t"
: : "a" (&tsk->tss.crp[0])
: "d0");
}
}
#define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address))
/* to find an entry in a page-table-directory */
extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
{
return mm->pgd + (address >> PGDIR_SHIFT);
}
extern pgd_t swapper_pg_dir[128];
extern pgd_t kernel_pg_dir[128];
extern inline pgd_t * pgd_offset_k(unsigned long address)
{
return kernel_pg_dir + (address >> PGDIR_SHIFT);
}
/* Find an entry in the second-level page table.. */
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
return (pmd_t *) pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PMD-1));
}
/* Find an entry in the third-level page table.. */
extern inline pte_t * pte_offset(pmd_t * pmdp, unsigned long address)
{
return (pte_t *) pmd_page(*pmdp) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}
/*
* Allocate and free page tables. The xxx_kernel() versions are
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -