⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pgtable.h

📁 嵌入式ARM的一些源代码
💻 H
📖 第 1 页 / 共 2 页
字号:
#define __S011	PAGE_SHARED
#define __S100	PAGE_READONLY
#define __S101	PAGE_READONLY
#define __S110	PAGE_SHARED
#define __S111	PAGE_SHARED

/*
 * Define this if things work differently on a i386 and a i486:
 * it will (on a i486) warn about kernel memory accesses that are
 * done without a 'verify_area(VERIFY_WRITE,..)'
 */
#undef TEST_VERIFY_AREA

/* page table for 0-4MB for everybody */
extern unsigned long pg0[1024];
/* zero page used for uninitialized stuff */
extern unsigned long empty_zero_page[1024];

/*
 * BAD_PAGETABLE is used when we need a bogus page-table, while
 * BAD_PAGE is used for a bogus page.
 *
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
extern pte_t __bad_page(void);
extern pte_t * __bad_pagetable(void);

#define BAD_PAGETABLE __bad_pagetable()
#define BAD_PAGE __bad_page()
#define ZERO_PAGE ((unsigned long) empty_zero_page)

/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR			(8*sizeof(unsigned long))

/* to align the pointer to a pointer address */
#define PTR_MASK			(~(sizeof(void*)-1))

/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
/* 64-bit machines, beware!  SRB. */
#define SIZEOF_PTR_LOG2			2

/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)

/* to set the page-dir */
#define SET_PAGE_DIR(tsk,pgdir) \
do { \
	(tsk)->tss.cr3 = (unsigned long) (pgdir); \
	if ((tsk) == current) \
		__asm__ __volatile__("movl %0,%%cr3": :"r" (pgdir)); \
} while (0)

#define pte_none(x)	(!pte_val(x))
#define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
#define pte_clear(xp)	do { pte_val(*(xp)) = 0; } while (0)

#define pmd_none(x)	(!pmd_val(x))
#define	pmd_bad(x)	((pmd_val(x) & ~PAGE_MASK) != _PAGE_TABLE)
#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
#define pmd_clear(xp)	do { pmd_val(*(xp)) = 0; } while (0)

/*
 * The "pgd_xxx()" functions here are trivial for a folded two-level
 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 * into the pgd entry)
 */
extern inline int pgd_none(pgd_t pgd)		{ return 0; }
extern inline int pgd_bad(pgd_t pgd)		{ return 0; }
extern inline int pgd_present(pgd_t pgd)	{ return 1; }
extern inline void pgd_clear(pgd_t * pgdp)	{ }

/*
 * The following only work if pte_present() is true.
 * Undefined behaviour if not..
 */
extern inline int pte_read(pte_t pte)		{ return pte_val(pte) & _PAGE_USER; }
extern inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_RW; }
extern inline int pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_USER; }
extern inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
extern inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }

extern inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_RW; return pte; }
extern inline pte_t pte_rdprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_USER; return pte; }
extern inline pte_t pte_exprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_USER; return pte; }
extern inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
extern inline pte_t pte_mkwrite(pte_t pte)	{ pte_val(pte) |= _PAGE_RW; return pte; }
extern inline pte_t pte_mkread(pte_t pte)	{ pte_val(pte) |= _PAGE_USER; return pte; }
extern inline pte_t pte_mkexec(pte_t pte)	{ pte_val(pte) |= _PAGE_USER; return pte; }
extern inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot)
{ pte_t pte; pte_val(pte) = page | pgprot_val(pgprot); return pte; }

extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }

extern inline unsigned long pte_page(pte_t pte)
{ return pte_val(pte) & PAGE_MASK; }

extern inline unsigned long pmd_page(pmd_t pmd)
{ return pmd_val(pmd) & PAGE_MASK; }

/* to find an entry in a page-table-directory */
extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
{
	return mm->pgd + (address >> PGDIR_SHIFT);
}

/* Find an entry in the second-level page table.. */
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
	return (pmd_t *) dir;
}

/* Find an entry in the third-level page table.. */ 
extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
{
	return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}

/*
 * Allocate and free page tables. The xxx_kernel() versions are
 * used to allocate a kernel page table - this turns on ASN bits
 * if any.
 */
extern inline void pte_free_kernel(pte_t * pte)
{
	free_page((unsigned long) pte);
}

extern const char bad_pmd_string[];

extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
{
	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
	if (pmd_none(*pmd)) {
		pte_t * page = (pte_t *) get_free_page(GFP_KERNEL);
		if (pmd_none(*pmd)) {
			if (page) {
				pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) page;
				return page + address;
			}
			pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
			return NULL;
		}
		free_page((unsigned long) page);
	}
	if (pmd_bad(*pmd)) {
		printk(bad_pmd_string, pmd_val(*pmd));
		pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
		return NULL;
	}
	return (pte_t *) pmd_page(*pmd) + address;
}

/*
 * allocating and freeing a pmd is trivial: the 1-entry pmd is
 * inside the pgd, so has no extra memory associated with it.
 */
extern inline void pmd_free_kernel(pmd_t * pmd)
{
	pmd_val(*pmd) = 0;
}

extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address)
{
	return (pmd_t *) pgd;
}

extern inline void pte_free(pte_t * pte)
{
	free_page((unsigned long) pte);
}

extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
	address = (address >> (PAGE_SHIFT-2)) & 4*(PTRS_PER_PTE - 1);

repeat:
	if (pmd_none(*pmd))
		goto getnew;
	if (pmd_bad(*pmd))
		goto fix;
	return (pte_t *) (pmd_page(*pmd) + address);
	
getnew:
{
	unsigned long page = __get_free_page(GFP_KERNEL);
	if (!pmd_none(*pmd))
		goto freenew;
	if (!page)
		goto oom;
	memset((void *) page, 0, PAGE_SIZE);
	pmd_val(*pmd) = _PAGE_TABLE | page;
	return (pte_t *) (page + address);
freenew:
	free_page(page);
	goto repeat;
}

fix:
	printk(bad_pmd_string, pmd_val(*pmd));
oom:
	pmd_val(*pmd) = _PAGE_TABLE | (unsigned long) BAD_PAGETABLE;
	return NULL;
}

/*
 * allocating and freeing a pmd is trivial: the 1-entry pmd is
 * inside the pgd, so has no extra memory associated with it.
 */
extern inline void pmd_free(pmd_t * pmd)
{
	pmd_val(*pmd) = 0;
}

extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
{
	return (pmd_t *) pgd;
}

extern inline void pgd_free(pgd_t * pgd)
{
	free_page((unsigned long) pgd);
}

extern inline pgd_t * pgd_alloc(void)
{
	return (pgd_t *) get_free_page(GFP_KERNEL);
}

extern pgd_t swapper_pg_dir[1024];

/*
 * The i386 doesn't have any external MMU info: the kernel page
 * tables contain all the necessary information.
 */
extern inline void update_mmu_cache(struct vm_area_struct * vma,
	unsigned long address, pte_t pte)
{
}

#define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)
#define SWP_OFFSET(entry) ((entry) >> 8)
#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))

#endif /* _I386_PAGE_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -