📄 zlib.c
字号:
NEEDBITS(3)
t = (uInt)b & 7;
s->last = t & 1;
switch (t >> 1)
{
case 0: /* stored */
Trace((stderr, "inflate: stored block%s\n",
s->last ? " (last)" : ""));
DUMPBITS(3)
t = k & 7; /* go to byte boundary */
DUMPBITS(t)
s->mode = LENS; /* get length of stored block */
break;
case 1: /* fixed */
Trace((stderr, "inflate: fixed codes block%s\n",
s->last ? " (last)" : ""));
{
uInt bl, bd;
inflate_huft *tl, *td;
inflate_trees_fixed(&bl, &bd, &tl, &td);
s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
if (s->sub.decode.codes == Z_NULL)
{
r = Z_MEM_ERROR;
LEAVE
}
s->sub.decode.tl = Z_NULL; /* don't try to free these */
s->sub.decode.td = Z_NULL;
}
DUMPBITS(3)
s->mode = CODES;
break;
case 2: /* dynamic */
Trace((stderr, "inflate: dynamic codes block%s\n",
s->last ? " (last)" : ""));
DUMPBITS(3)
s->mode = TABLE;
break;
case 3: /* illegal */
DUMPBITS(3)
s->mode = BADB;
z->msg = "invalid block type";
r = Z_DATA_ERROR;
LEAVE
}
break;
case LENS:
NEEDBITS(32)
if (((~b) >> 16) != (b & 0xffff))
{
s->mode = BADB;
z->msg = "invalid stored block lengths";
r = Z_DATA_ERROR;
LEAVE
}
s->sub.left = (uInt)b & 0xffff;
b = k = 0; /* dump bits */
Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
s->mode = s->sub.left ? STORED : TYPE;
break;
case STORED:
if (n == 0)
LEAVE
NEEDOUT
t = s->sub.left;
if (t > n) t = n;
if (t > m) t = m;
zmemcpy(q, p, t);
p += t; n -= t;
q += t; m -= t;
if ((s->sub.left -= t) != 0)
break;
Tracev((stderr, "inflate: stored end, %lu total out\n",
z->total_out + (q >= s->read ? q - s->read :
(s->end - s->read) + (q - s->window))));
s->mode = s->last ? DRY : TYPE;
break;
case TABLE:
NEEDBITS(14)
s->sub.trees.table = t = (uInt)b & 0x3fff;
#ifndef PKZIP_BUG_WORKAROUND
if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
{
s->mode = BADB;
z->msg = "too many length or distance symbols";
r = Z_DATA_ERROR;
LEAVE
}
#endif
t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
if (t < 19)
t = 19;
if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
{
r = Z_MEM_ERROR;
LEAVE
}
s->sub.trees.nblens = t;
DUMPBITS(14)
s->sub.trees.index = 0;
Tracev((stderr, "inflate: table sizes ok\n"));
s->mode = BTREE;
case BTREE:
while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
{
NEEDBITS(3)
s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
DUMPBITS(3)
}
while (s->sub.trees.index < 19)
s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
s->sub.trees.bb = 7;
t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
&s->sub.trees.tb, z);
if (t != Z_OK)
{
r = t;
if (r == Z_DATA_ERROR)
s->mode = BADB;
LEAVE
}
s->sub.trees.index = 0;
Tracev((stderr, "inflate: bits tree ok\n"));
s->mode = DTREE;
case DTREE:
while (t = s->sub.trees.table,
s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
{
inflate_huft *h;
uInt i, j, c;
t = s->sub.trees.bb;
NEEDBITS(t)
h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
t = h->word.what.Bits;
c = h->more.Base;
if (c < 16)
{
DUMPBITS(t)
s->sub.trees.blens[s->sub.trees.index++] = c;
}
else /* c == 16..18 */
{
i = c == 18 ? 7 : c - 14;
j = c == 18 ? 11 : 3;
NEEDBITS(t + i)
DUMPBITS(t)
j += (uInt)b & inflate_mask[i];
DUMPBITS(i)
i = s->sub.trees.index;
t = s->sub.trees.table;
if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
(c == 16 && i < 1))
{
s->mode = BADB;
z->msg = "invalid bit length repeat";
r = Z_DATA_ERROR;
LEAVE
}
c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
do {
s->sub.trees.blens[i++] = c;
} while (--j);
s->sub.trees.index = i;
}
}
inflate_trees_free(s->sub.trees.tb, z);
s->sub.trees.tb = Z_NULL;
{
uInt bl, bd;
inflate_huft *tl, *td;
inflate_codes_statef *c;
bl = 9; /* must be <= 9 for lookahead assumptions */
bd = 6; /* must be <= 9 for lookahead assumptions */
t = s->sub.trees.table;
t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
s->sub.trees.blens, &bl, &bd, &tl, &td, z);
if (t != Z_OK)
{
if (t == (uInt)Z_DATA_ERROR)
s->mode = BADB;
r = t;
LEAVE
}
Tracev((stderr, "inflate: trees ok\n"));
if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
{
inflate_trees_free(td, z);
inflate_trees_free(tl, z);
r = Z_MEM_ERROR;
LEAVE
}
ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
s->sub.decode.codes = c;
s->sub.decode.tl = tl;
s->sub.decode.td = td;
}
s->mode = CODES;
case CODES:
UPDATE
if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
return inflate_flush(s, z, r);
r = Z_OK;
inflate_codes_free(s->sub.decode.codes, z);
inflate_trees_free(s->sub.decode.td, z);
inflate_trees_free(s->sub.decode.tl, z);
LOAD
Tracev((stderr, "inflate: codes end, %lu total out\n",
z->total_out + (q >= s->read ? q - s->read :
(s->end - s->read) + (q - s->window))));
if (!s->last)
{
s->mode = TYPE;
break;
}
if (k > 7) /* return unused byte, if any */
{
Assert(k < 16, "inflate_codes grabbed too many bytes")
k -= 8;
n++;
p--; /* can always return one */
}
s->mode = DRY;
case DRY:
FLUSH
if (s->read != s->write)
LEAVE
s->mode = DONEB;
case DONEB:
r = Z_STREAM_END;
LEAVE
case BADB:
r = Z_DATA_ERROR;
LEAVE
default:
r = Z_STREAM_ERROR;
LEAVE
}
}
local int inflate_blocks_free(s, z, c)
inflate_blocks_statef *s;
z_stream *z;
uLongf *c;
{
inflate_blocks_reset(s, z, c);
ZFREE(z, s->window, s->end - s->window);
ZFREE(z, s, sizeof(struct inflate_blocks_state));
Trace((stderr, "inflate: blocks freed\n"));
return Z_OK;
}
/*
* This subroutine adds the data at next_in/avail_in to the output history
* without performing any output. The output buffer must be "caught up";
* i.e. no pending output (hence s->read equals s->write), and the state must
* be BLOCKS (i.e. we should be willing to see the start of a series of
* BLOCKS). On exit, the output will also be caught up, and the checksum
* will have been updated if need be.
*/
local int inflate_addhistory(s, z)
inflate_blocks_statef *s;
z_stream *z;
{
uLong b; /* bit buffer */ /* NOT USED HERE */
uInt k; /* bits in bit buffer */ /* NOT USED HERE */
uInt t; /* temporary storage */
Bytef *p; /* input data pointer */
uInt n; /* bytes available there */
Bytef *q; /* output window write pointer */
uInt m; /* bytes to end of window or read pointer */
if (s->read != s->write)
return Z_STREAM_ERROR;
if (s->mode != TYPE)
return Z_DATA_ERROR;
/* we're ready to rock */
LOAD
/* while there is input ready, copy to output buffer, moving
* pointers as needed.
*/
while (n) {
t = n; /* how many to do */
/* is there room until end of buffer? */
if (t > m) t = m;
/* update check information */
if (s->checkfn != Z_NULL)
s->check = (*s->checkfn)(s->check, q, t);
/* output callback */
if (z->outcb != Z_NULL)
(*z->outcb)(q, t);
zmemcpy(q, p, t);
q += t;
p += t;
n -= t;
z->total_out += t;
s->read = q; /* drag read pointer forward */
/* WRAP */ /* expand WRAP macro by hand to handle s->read */
if (q == s->end) {
s->read = q = s->window;
m = WAVAIL;
}
}
UPDATE
return Z_OK;
}
/*
* At the end of a Deflate-compressed PPP packet, we expect to have seen
* a `stored' block type value but not the (zero) length bytes.
*/
local int inflate_packet_flush(s)
inflate_blocks_statef *s;
{
if (s->mode != LENS)
return Z_DATA_ERROR;
s->mode = TYPE;
return Z_OK;
}
/*+++++*/
/* inftrees.c -- generate Huffman trees for efficient decoding
* Copyright (C) 1995 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* simplify the use of the inflate_huft type with some defines */
#define base more.Base
#define next more.Next
#define exop word.what.Exop
#define bits word.what.Bits
local int huft_build OF((
uIntf *, /* code lengths in bits */
uInt, /* number of codes */
uInt, /* number of "simple" codes */
uIntf *, /* list of base values for non-simple codes */
uIntf *, /* list of extra bits for non-simple codes */
inflate_huft * FAR*,/* result: starting table */
uIntf *, /* maximum lookup bits (returns actual) */
z_stream *)); /* for zalloc function */
local voidpf falloc OF((
voidpf, /* opaque pointer (not used) */
uInt, /* number of items */
uInt)); /* size of item */
local void ffree OF((
voidpf q, /* opaque pointer (not used) */
voidpf p, /* what to free (not used) */
uInt n)); /* number of bytes (not used) */
/* Tables for deflate from PKZIP's appnote.txt. */
local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
/* actually lengths - 2; also see note #13 above about 258 */
local uInt cplext[] = { /* Extra bits for literal codes 257..285 */
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */
local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577};
local uInt cpdext[] = { /* Extra bits for distance codes */
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
12, 12, 13, 13};
/*
Huffman code decoding is performed using a multi-level table lookup.
The fastest way to decode is to simply build a lookup table whose
size is determined by the longest code. However, the time it takes
to build this table can also be a factor if the data being decoded
is not very long. The most common codes are necessarily the
shortest codes, so those codes dominate the decoding time, and hence
the speed. The idea is you can have a shorter table that decodes the
shorter, more probable codes, and then point to subsidiary tables for
the longer codes. The time it costs to decode the longer codes is
then traded against the time it takes to make longer tables.
This results of this trade are in the variables lbits and dbits
below. lbits is the number of bits the first level table for literal/
length codes can decode in one step, and dbits is the same thing for
the distance codes. Subsequent tables are also less than or equal to
those sizes. These values may be adjusted either when all of the
codes are shorter than that, in which case the longest code length in
bits is used, or when the shortest code is *longer* than the requested
table size, in which case the length of the shortest code in bits is
used.
There are two different values for the two tables, since they code a
different number of possibilities each. The literal/length table
codes 286 possible values, or in a flat code, a little over eight
bits. The distance table codes 30 possible values, or a little less
than five bits, flat. The optimum values for speed end up being
about one bit more than those, so lbits is 8+1 and dbits is 5+1.
The optimum values may differ though from machine to machine, and
possibly even between compilers. Your mileage may vary.
*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -