📄 bch3.c
字号:
/* * File: bch3.c * Title: Encoder/decoder for binary BCH codes in C (Version 3.1) * Author: Robert Morelos-Zaragoza * Date: August 1994 * Revised: June 13, 1997 * * =============== Encoder/Decoder for binary BCH codes in C ================= * * Version 1: Original program. The user provides the generator polynomial * of the code (cumbersome!). * Version 2: Computes the generator polynomial of the code. * Version 3: No need to input the coefficients of a primitive polynomial of * degree m, used to construct the Galois Field GF(2**m). The * program now works for any binary BCH code of length such that: * 2**(m-1) - 1 < length <= 2**m - 1 * * Note: You may have to change the size of the arrays to make it work. * * The encoding and decoding methods used in this program are based on the * book "Error Control Coding: Fundamentals and Applications", by Lin and * Costello, Prentice Hall, 1983. * * Thanks to Patrick Boyle (pboyle@era.com) for his observation that 'bch2.c' * did not work for lengths other than 2**m-1 which led to this new version. * Portions of this program are from 'rs.c', a Reed-Solomon encoder/decoder * in C, written by Simon Rockliff (simon@augean.ua.oz.au) on 21/9/89. The * previous version of the BCH encoder/decoder in C, 'bch2.c', was written by * Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) on 5/19/92. * * NOTE: * The author is not responsible for any malfunctioning of * this program, nor for any damage caused by it. Please include the * original program along with these comments in any redistribution. * * For more information, suggestions, or other ideas on implementing error * correcting codes, please contact me at: * * Robert Morelos-Zaragoza * 5120 Woodway, Suite 7036 * Houston, Texas 77056 * * email: r.morelos-zaragoza@ieee.org * * COPYRIGHT NOTICE: This computer program is free for non-commercial purposes. * You may implement this program for any non-commercial application. You may * also implement this program for commercial purposes, provided that you * obtain my written permission. Any modification of this program is covered * by this copyright. * * == Copyright (c) 1994-7, Robert Morelos-Zaragoza. All rights reserved. == * * m = order of the Galois field GF(2**m) * n = 2**m - 1 = size of the multiplicative group of GF(2**m) * length = length of the BCH code * t = error correcting capability (max. no. of errors the code corrects) * d = 2*t + 1 = designed min. distance = no. of consecutive roots of g(x) + 1 * k = n - deg(g(x)) = dimension (no. of information bits/codeword) of the code * p[] = coefficients of a primitive polynomial used to generate GF(2**m) * g[] = coefficients of the generator polynomial, g(x) * alpha_to [] = log table of GF(2**m) * index_of[] = antilog table of GF(2**m) * data[] = information bits = coefficients of data polynomial, i(x) * bb[] = coefficients of redundancy polynomial x^(length-k) i(x) modulo g(x) * numerr = number of errors * errpos[] = error positions * recd[] = coefficients of the received polynomial * decerror = number of decoding errors (in _message_ positions) * */#include <math.h>#include <stdio.h>int m, n, length, k, t, d;int p[21];int alpha_to[1048576], index_of[1048576], g[548576];int recd[1048576], data[1048576], bb[548576];int seed;int numerr, errpos[1024], decerror = 0;void read_p()/* * Read m, the degree of a primitive polynomial p(x) used to compute the * Galois field GF(2**m). Get precomputed coefficients p[] of p(x). Read * the code length. */{ int i, ninf; printf("bch3: An encoder/decoder for binary BCH codes\n"); printf("Copyright (c) 1994-7. Robert Morelos-Zaragoza.\n"); printf("This program is free, please read first the copyright notice.\n"); printf("\nFirst, enter a value of m such that the code length is\n"); printf("2**(m-1) - 1 < length <= 2**m - 1\n\n"); do { printf("Enter m (between 2 and 20): "); scanf("%d", &m); } while ( !(m>1) || !(m<21) ); for (i=1; i<m; i++) p[i] = 0; p[0] = p[m] = 1; if (m == 2) p[1] = 1; else if (m == 3) p[1] = 1; else if (m == 4) p[1] = 1; else if (m == 5) p[2] = 1; else if (m == 6) p[1] = 1; else if (m == 7) p[1] = 1; else if (m == 8) p[4] = p[5] = p[6] = 1; else if (m == 9) p[4] = 1; else if (m == 10) p[3] = 1; else if (m == 11) p[2] = 1; else if (m == 12) p[3] = p[4] = p[7] = 1; else if (m == 13) p[1] = p[3] = p[4] = 1; else if (m == 14) p[1] = p[11] = p[12] = 1; else if (m == 15) p[1] = 1; else if (m == 16) p[2] = p[3] = p[5] = 1; else if (m == 17) p[3] = 1; else if (m == 18) p[7] = 1; else if (m == 19) p[1] = p[5] = p[6] = 1; else if (m == 20) p[3] = 1; printf("p(x) = "); n = 1; for (i = 0; i <= m; i++) { n *= 2; printf("%1d", p[i]); } printf("\n"); n = n / 2 - 1; ninf = (n + 1) / 2 - 1; do { printf("Enter code length (%d < length <= %d): ", ninf, n); scanf("%d", &length); } while ( !((length <= n)&&(length>ninf)) );}void generate_gf()/* * Generate field GF(2**m) from the irreducible polynomial p(X) with * coefficients in p[0]..p[m]. * * Lookup tables: * index->polynomial form: alpha_to[] contains j=alpha^i; * polynomial form -> index form: index_of[j=alpha^i] = i * * alpha=2 is the primitive element of GF(2**m) */{ register int i, mask; mask = 1; alpha_to[m] = 0; for (i = 0; i < m; i++) { alpha_to[i] = mask; index_of[alpha_to[i]] = i; if (p[i] != 0) alpha_to[m] ^= mask; mask <<= 1; } index_of[alpha_to[m]] = m; mask >>= 1; for (i = m + 1; i < n; i++) { if (alpha_to[i - 1] >= mask) alpha_to[i] = alpha_to[m] ^ ((alpha_to[i - 1] ^ mask) << 1); else alpha_to[i] = alpha_to[i - 1] << 1; index_of[alpha_to[i]] = i; } index_of[0] = -1;}void gen_poly()/* * Compute the generator polynomial of a binary BCH code. Fist generate the * cycle sets modulo 2**m - 1, cycle[][] = (i, 2*i, 4*i, ..., 2^l*i). Then * determine those cycle sets that contain integers in the set of (d-1) * consecutive integers {1..(d-1)}. The generator polynomial is calculated * as the product of linear factors of the form (x+alpha^i), for every i in * the above cycle sets. */{ register int ii, jj, ll, kaux; register int test, aux, nocycles, root, noterms, rdncy; int cycle[1024][21], size[1024], min[1024], zeros[1024]; /* Generate cycle sets modulo n, n = 2**m - 1 */ cycle[0][0] = 0; size[0] = 1; cycle[1][0] = 1; size[1] = 1; jj = 1; /* cycle set index */ if (m > 9) { printf("Computing cycle sets modulo %d\n", n); printf("(This may take some time)...\n"); } do { /* Generate the jj-th cycle set */ ii = 0; do { ii++; cycle[jj][ii] = (cycle[jj][ii - 1] * 2) % n; size[jj]++; aux = (cycle[jj][ii] * 2) % n; } while (aux != cycle[jj][0]); /* Next cycle set representative */ ll = 0; do { ll++; test = 0; for (ii = 1; ((ii <= jj) && (!test)); ii++) /* Examine previous cycle sets */ for (kaux = 0; ((kaux < size[ii]) && (!test)); kaux++) if (ll == cycle[ii][kaux]) test = 1; } while ((test) && (ll < (n - 1))); if (!(test)) { jj++; /* next cycle set index */ cycle[jj][0] = ll; size[jj] = 1; } } while (ll < (n - 1)); nocycles = jj; /* number of cycle sets modulo n */ printf("Enter the error correcting capability, t: "); scanf("%d", &t); d = 2 * t + 1; /* Search for roots 1, 2, ..., d-1 in cycle sets */ kaux = 0; rdncy = 0; for (ii = 1; ii <= nocycles; ii++) { min[kaux] = 0; test = 0; for (jj = 0; ((jj < size[ii]) && (!test)); jj++) for (root = 1; ((root < d) && (!test)); root++) if (root == cycle[ii][jj]) { test = 1; min[kaux] = ii; } if (min[kaux]) { rdncy += size[min[kaux]]; kaux++; } } noterms = kaux; kaux = 1; for (ii = 0; ii < noterms; ii++) for (jj = 0; jj < size[min[ii]]; jj++) { zeros[kaux] = cycle[min[ii]][jj]; kaux++; } k = length - rdncy; if (k<0) { printf("Parameters invalid!\n"); exit(0); } printf("This is a (%d, %d, %d) binary BCH code\n", length, k, d); /* Compute the generator polynomial */ g[0] = alpha_to[zeros[1]]; g[1] = 1; /* g(x) = (X + zeros[1]) initially */ for (ii = 2; ii <= rdncy; ii++) { g[ii] = 1; for (jj = ii - 1; jj > 0; jj--) if (g[jj] != 0) g[jj] = g[jj - 1] ^ alpha_to[(index_of[g[jj]] + zeros[ii]) % n]; else g[jj] = g[jj - 1]; g[0] = alpha_to[(index_of[g[0]] + zeros[ii]) % n]; } printf("Generator polynomial:\ng(x) = "); for (ii = 0; ii <= rdncy; ii++) { printf("%d", g[ii]); if (ii && ((ii % 50) == 0)) printf("\n"); } printf("\n");}void encode_bch()/* * Compute redundacy bb[], the coefficients of b(x). The redundancy * polynomial b(x) is the remainder after dividing x^(length-k)*data(x)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -