⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bch3.c

📁 一些纠错编码算法的源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * File:    bch3.c * Title:   Encoder/decoder for binary BCH codes in C (Version 3.1) * Author:  Robert Morelos-Zaragoza * Date:    August 1994 * Revised: June 13, 1997 * * ===============  Encoder/Decoder for binary BCH codes in C ================= * * Version 1:   Original program. The user provides the generator polynomial *              of the code (cumbersome!). * Version 2:   Computes the generator polynomial of the code. * Version 3:   No need to input the coefficients of a primitive polynomial of *              degree m, used to construct the Galois Field GF(2**m). The *              program now works for any binary BCH code of length such that: *              2**(m-1) - 1 < length <= 2**m - 1 * * Note:        You may have to change the size of the arrays to make it work. * * The encoding and decoding methods used in this program are based on the * book "Error Control Coding: Fundamentals and Applications", by Lin and * Costello, Prentice Hall, 1983. * * Thanks to Patrick Boyle (pboyle@era.com) for his observation that 'bch2.c' * did not work for lengths other than 2**m-1 which led to this new version. * Portions of this program are from 'rs.c', a Reed-Solomon encoder/decoder * in C, written by Simon Rockliff (simon@augean.ua.oz.au) on 21/9/89. The * previous version of the BCH encoder/decoder in C, 'bch2.c', was written by * Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) on 5/19/92. * * NOTE:     *          The author is not responsible for any malfunctioning of *          this program, nor for any damage caused by it. Please include the *          original program along with these comments in any redistribution. * *  For more information, suggestions, or other ideas on implementing error *  correcting codes, please contact me at: * *                           Robert Morelos-Zaragoza *                           5120 Woodway, Suite 7036 *                           Houston, Texas 77056 * *                    email: r.morelos-zaragoza@ieee.org * * COPYRIGHT NOTICE: This computer program is free for non-commercial purposes. * You may implement this program for any non-commercial application. You may  * also implement this program for commercial purposes, provided that you * obtain my written permission. Any modification of this program is covered * by this copyright. * * == Copyright (c) 1994-7,  Robert Morelos-Zaragoza. All rights reserved.  == * * m = order of the Galois field GF(2**m)  * n = 2**m - 1 = size of the multiplicative group of GF(2**m) * length = length of the BCH code * t = error correcting capability (max. no. of errors the code corrects) * d = 2*t + 1 = designed min. distance = no. of consecutive roots of g(x) + 1 * k = n - deg(g(x)) = dimension (no. of information bits/codeword) of the code * p[] = coefficients of a primitive polynomial used to generate GF(2**m) * g[] = coefficients of the generator polynomial, g(x) * alpha_to [] = log table of GF(2**m)  * index_of[] = antilog table of GF(2**m) * data[] = information bits = coefficients of data polynomial, i(x) * bb[] = coefficients of redundancy polynomial x^(length-k) i(x) modulo g(x) * numerr = number of errors  * errpos[] = error positions  * recd[] = coefficients of the received polynomial  * decerror = number of decoding errors (in _message_ positions)  * */#include <math.h>#include <stdio.h>int             m, n, length, k, t, d;int             p[21];int             alpha_to[1048576], index_of[1048576], g[548576];int             recd[1048576], data[1048576], bb[548576];int             seed;int             numerr, errpos[1024], decerror = 0;void read_p()/* *	Read m, the degree of a primitive polynomial p(x) used to compute the *	Galois field GF(2**m). Get precomputed coefficients p[] of p(x). Read *	the code length. */{	int			i, ninf;	printf("bch3: An encoder/decoder for binary BCH codes\n");	printf("Copyright (c) 1994-7. Robert Morelos-Zaragoza.\n");	printf("This program is free, please read first the copyright notice.\n");	printf("\nFirst, enter a value of m such that the code length is\n");	printf("2**(m-1) - 1 < length <= 2**m - 1\n\n");    do {	   printf("Enter m (between 2 and 20): ");	   scanf("%d", &m);    } while ( !(m>1) || !(m<21) );	for (i=1; i<m; i++)		p[i] = 0;	p[0] = p[m] = 1;	if (m == 2)			p[1] = 1;	else if (m == 3)	p[1] = 1;	else if (m == 4)	p[1] = 1;	else if (m == 5)	p[2] = 1;	else if (m == 6)	p[1] = 1;	else if (m == 7)	p[1] = 1;	else if (m == 8)	p[4] = p[5] = p[6] = 1;	else if (m == 9)	p[4] = 1;	else if (m == 10)	p[3] = 1;	else if (m == 11)	p[2] = 1;	else if (m == 12)	p[3] = p[4] = p[7] = 1;	else if (m == 13)	p[1] = p[3] = p[4] = 1;	else if (m == 14)	p[1] = p[11] = p[12] = 1;	else if (m == 15)	p[1] = 1;	else if (m == 16)	p[2] = p[3] = p[5] = 1;	else if (m == 17)	p[3] = 1;	else if (m == 18)	p[7] = 1;	else if (m == 19)	p[1] = p[5] = p[6] = 1;	else if (m == 20)	p[3] = 1;	printf("p(x) = ");    n = 1;	for (i = 0; i <= m; i++) {        n *= 2;		printf("%1d", p[i]);        }	printf("\n");	n = n / 2 - 1;	ninf = (n + 1) / 2 - 1;	do  {		printf("Enter code length (%d < length <= %d): ", ninf, n);		scanf("%d", &length);	} while ( !((length <= n)&&(length>ninf)) );}void generate_gf()/* * Generate field GF(2**m) from the irreducible polynomial p(X) with * coefficients in p[0]..p[m]. * * Lookup tables: *   index->polynomial form: alpha_to[] contains j=alpha^i; *   polynomial form -> index form:	index_of[j=alpha^i] = i * * alpha=2 is the primitive element of GF(2**m)  */{	register int    i, mask;	mask = 1;	alpha_to[m] = 0;	for (i = 0; i < m; i++) {		alpha_to[i] = mask;		index_of[alpha_to[i]] = i;		if (p[i] != 0)			alpha_to[m] ^= mask;		mask <<= 1;	}	index_of[alpha_to[m]] = m;	mask >>= 1;	for (i = m + 1; i < n; i++) {		if (alpha_to[i - 1] >= mask)		  alpha_to[i] = alpha_to[m] ^ ((alpha_to[i - 1] ^ mask) << 1);		else		  alpha_to[i] = alpha_to[i - 1] << 1;		index_of[alpha_to[i]] = i;	}	index_of[0] = -1;}void gen_poly()/* * Compute the generator polynomial of a binary BCH code. Fist generate the * cycle sets modulo 2**m - 1, cycle[][] =  (i, 2*i, 4*i, ..., 2^l*i). Then * determine those cycle sets that contain integers in the set of (d-1) * consecutive integers {1..(d-1)}. The generator polynomial is calculated * as the product of linear factors of the form (x+alpha^i), for every i in * the above cycle sets. */{	register int	ii, jj, ll, kaux;	register int	test, aux, nocycles, root, noterms, rdncy;	int             cycle[1024][21], size[1024], min[1024], zeros[1024];	/* Generate cycle sets modulo n, n = 2**m - 1 */	cycle[0][0] = 0;	size[0] = 1;	cycle[1][0] = 1;	size[1] = 1;	jj = 1;			/* cycle set index */	if (m > 9)  {		printf("Computing cycle sets modulo %d\n", n);		printf("(This may take some time)...\n");	}	do {		/* Generate the jj-th cycle set */		ii = 0;		do {			ii++;			cycle[jj][ii] = (cycle[jj][ii - 1] * 2) % n;			size[jj]++;			aux = (cycle[jj][ii] * 2) % n;		} while (aux != cycle[jj][0]);		/* Next cycle set representative */		ll = 0;		do {			ll++;			test = 0;			for (ii = 1; ((ii <= jj) && (!test)); ii++)				/* Examine previous cycle sets */			  for (kaux = 0; ((kaux < size[ii]) && (!test)); kaux++)			     if (ll == cycle[ii][kaux])			        test = 1;		} while ((test) && (ll < (n - 1)));		if (!(test)) {			jj++;	/* next cycle set index */			cycle[jj][0] = ll;			size[jj] = 1;		}	} while (ll < (n - 1));	nocycles = jj;		/* number of cycle sets modulo n */	printf("Enter the error correcting capability, t: ");	scanf("%d", &t);	d = 2 * t + 1;	/* Search for roots 1, 2, ..., d-1 in cycle sets */	kaux = 0;	rdncy = 0;	for (ii = 1; ii <= nocycles; ii++) {		min[kaux] = 0;		test = 0;		for (jj = 0; ((jj < size[ii]) && (!test)); jj++)			for (root = 1; ((root < d) && (!test)); root++)				if (root == cycle[ii][jj])  {					test = 1;					min[kaux] = ii;				}		if (min[kaux]) {			rdncy += size[min[kaux]];			kaux++;		}	}	noterms = kaux;	kaux = 1;	for (ii = 0; ii < noterms; ii++)		for (jj = 0; jj < size[min[ii]]; jj++) {			zeros[kaux] = cycle[min[ii]][jj];			kaux++;		}	k = length - rdncy;    if (k<0)      {         printf("Parameters invalid!\n");         exit(0);      }	printf("This is a (%d, %d, %d) binary BCH code\n", length, k, d);	/* Compute the generator polynomial */	g[0] = alpha_to[zeros[1]];	g[1] = 1;		/* g(x) = (X + zeros[1]) initially */	for (ii = 2; ii <= rdncy; ii++) {	  g[ii] = 1;	  for (jj = ii - 1; jj > 0; jj--)	    if (g[jj] != 0)	      g[jj] = g[jj - 1] ^ alpha_to[(index_of[g[jj]] + zeros[ii]) % n];	    else	      g[jj] = g[jj - 1];	  g[0] = alpha_to[(index_of[g[0]] + zeros[ii]) % n];	}	printf("Generator polynomial:\ng(x) = ");	for (ii = 0; ii <= rdncy; ii++) {	  printf("%d", g[ii]);	  if (ii && ((ii % 50) == 0))	    printf("\n");	}	printf("\n");}void encode_bch()/* * Compute redundacy bb[], the coefficients of b(x). The redundancy * polynomial b(x) is the remainder after dividing x^(length-k)*data(x)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -