📄 golay23.c
字号:
/* File: golay23.c * Title: Encoder/decoder for a binary (23,12,7) Golay code * Author: Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) * Date: August 1994 * * The binary (23,12,7) Golay code is an example of a perfect code, that is, * the number of syndromes equals the number of correctable error patterns. * The minimum distance is 7, so all error patterns of Hamming weight up to * 3 can be corrected. The total number of these error patterns is: * * Number of errors Number of patterns * ---------------- ------------------ * 0 1 * 1 23 * 2 253 * 3 1771 * ---- * Total number of error patterns = 2048 = 2^{11} = number of syndromes * -- * number of redundant bits -------^ * * Because of its relatively low length (23), dimension (12) and number of * redundant bits (11), the binary (23,12,7) Golay code can be encoded and * decoded simply by using look-up tables. The program below uses a 16K * encoding table and an 8K decoding table. * * For more information, suggestions, or other ideas on implementing error * correcting codes, please contact me at (I'm temporarily in Japan, but * below is my U.S. address): * * Robert Morelos-Zaragoza * 770 S. Post Oak Ln. #200 * Houston, Texas 77056 * * email: robert@spectra.eng.hawaii.edu * * Homework: Add an overall parity-check bit to get the (24,12,8) * extended Golay code. * * COPYRIGHT NOTICE: This computer program is free for non-commercial purposes. * You may implement this program for any non-commercial application. You may * also implement this program for commercial purposes, provided that you * obtain my written permission. Any modification of this program is covered * by this copyright. * * == Copyright (c) 1994 Robert Morelos-Zaragoza. All rights reserved. == */#include <stdio.h>#define X22 0x00400000 /* vector representation of X^{22} */#define X11 0x00000800 /* vector representation of X^{11} */#define MASK12 0xfffff800 /* auxiliary vector for testing */#define GENPOL 0x00000c75 /* generator polinomial, g(x) *//* Global variables: * * pattern = error pattern, or information, or received vector * encoding_table[] = encoding table * decoding_table[] = decoding table * data = information bits, i(x) * codeword = code bits = x^{11}i(x) + (x^{11}i(x) mod g(x)) * numerr = number of errors = Hamming weight of error polynomial e(x) * position[] = error positions in the vector representation of e(x) * recd = representation of corrupted received polynomial r(x) = c(x) + e(x) * decerror = number of decoding errors * a[] = auxiliary array to generate correctable error patterns */long pattern;long encoding_table[4096], decoding_table[2048];long data, codeword, recd;long position[23] = { 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010, 0x00000020, 0x00000040, 0x00000080, 0x00000100, 0x00000200, 0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000, 0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000, 0x00100000, 0x00200000, 0x00400000 };long numerr, errpos[23], decerror = 0;int a[4];long arr2int(a,r)/* * Convert a binary vector of Hamming weight r, and nonzero positions in * array a[1]...a[r], to a long integer \sum_{i=1}^r 2^{a[i]-1}. */int r;int *a;{ int i; long mul, result = 0, temp; for (i=1; i<=r; i++) { mul = 1; temp = a[i]-1; while (temp--) mul = mul << 1; result += mul; } return(result);}void nextcomb(n, r, a)/* * Calculate next r-combination of an n-set. */int n, r;int *a;{ int i, j; a[r]++; if (a[r] <= n) return; j = r - 1; while (a[j] == n - r + j) j--; for (i = r; i >= j; i--) a[i] = a[j] + i - j + 1; return;}long get_syndrome(pattern)/* * Compute the syndrome corresponding to the given pattern, i.e., the * remainder after dividing the pattern (when considering it as the vector * representation of a polynomial) by the generator polynomial, GENPOL. * In the program this pattern has several meanings: (1) pattern = infomation * bits, when constructing the encoding table; (2) pattern = error pattern, * when constructing the decoding table; and (3) pattern = received vector, to * obtain its syndrome in decoding. */long pattern;{ long aux = X22, aux2; if (pattern >= X11) while (pattern & MASK12) { while (!(aux & pattern)) aux = aux >> 1; pattern ^= (aux/X11) * GENPOL; } return(pattern);}main(){ register int i,j; long temp; int seed = 133757; /* * --------------------------------------------------------------------- * Generate ENCODING TABLE * * An entry to the table is an information vector, a 32-bit integer, * whose 12 least significant positions are the information bits. The * resulting value is a codeword in the (23,12,7) Golay code: A 32-bit * integer whose 23 least significant bits are coded bits: Of these, the * 12 most significant bits are information bits and the 11 least * significant bits are redundant bits (systematic encoding). * --------------------------------------------------------------------- */ for (pattern = 0; pattern < 4096; pattern++) { temp = pattern << 11; /* multiply information by X^{11} */ encoding_table[pattern] = temp + get_syndrome(temp);/* add redundancy */ } /* * --------------------------------------------------------------------- * Generate DECODING TABLE * * An entry to the decoding table is a syndrome and the resulting value * is the most likely error pattern. First an error pattern is generated. * Then its syndrome is calculated and used as a pointer to the table * where the error pattern value is stored. * --------------------------------------------------------------------- * * (1) Error patterns of WEIGHT 1 (SINGLE ERRORS) */ decoding_table[0] = 0; decoding_table[1] = 1; temp = 1; for (i=2; i<= 23; i++) { temp *= 2; decoding_table[get_syndrome(temp)] = temp; } /* * (2) Error patterns of WEIGHT 2 (DOUBLE ERRORS) */ a[1] = 1; a[2] = 2; temp = arr2int(a,2); decoding_table[get_syndrome(temp)] = temp; for (i=1; i<253; i++) { nextcomb(23,2,a); temp = arr2int(a,2); decoding_table[get_syndrome(temp)] = temp; } /* * (3) Error patterns of WEIGHT 3 (TRIPLE ERRORS) */ a[1] = 1; a[2] = 2; a[3] = 3; temp = arr2int(a,3); decoding_table[get_syndrome(temp)] = temp; for (i=1; i<1771; i++) { nextcomb(23,3,a); temp = arr2int(a,3); decoding_table[get_syndrome(temp)] = temp; } /* --------------------------------------------------------------------- * Generate DATA * --------------------------------------------------------------------- */ srandom(seed); /* * data = 12 information bits, an information polynomial i(x) */ data = random() & 0x00000fff; printf("data = %#012x\n", data); /* * --------------------------------------------------------------------- * ENCODING * --------------------------------------------------------------------- */ codeword = encoding_table[data]; printf("codeword = %#012x\n", codeword); /* * --------------------------------------------------------------------- * ERRORS * --------------------------------------------------------------------- */ printf("Enter the number of errors and their positions (0...22): "); scanf("%d", &numerr); for (i = 0; i < numerr; i++) scanf("%d", &errpos[i]); /* * --------------------------------------------------------------------- * RECEIVED VECTOR * --------------------------------------------------------------------- */ recd = codeword; if (numerr) for (i = 0; i < numerr; i++) recd ^= position[errpos[i]]; printf("received vector = %#012x\n", recd); /* * --------------------------------------------------------------------- * DECODING * --------------------------------------------------------------------- */ printf("syndrome = %#012x\n", get_syndrome(recd)); printf("error pattern = %#012x\n", decoding_table[get_syndrome(recd)]); /* * Calculate the syndrome, look up the corresponding error pattern and * add it to the received vector. */ recd ^= decoding_table[get_syndrome(recd)]; printf("decoded vector = %#012x\n", recd); printf("recovered data = %#012x\n", (recd>>11)); printf("original data = %#012x\n", data); /* * DECODING ERRORS? Only the data portion is compared. Note that this * is only possible in a simulation! */ pattern = (recd ^ codeword) >> 11; for (i=0; i<12; i++) if (pattern&position[i]) decerror++; printf("there were %d decoding errors\n", decerror);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -