⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 3072_31.htm

📁 转载别人的作为下载源
💻 HTM
字号:
<HTML><HEAD><TITLE>new</TITLE><META content="text/html; charset=gb2312" http-equiv=Content-Type><LINK href="text.css" rel=stylesheet type=text/css><META content="Microsoft FrontPage 4.0" name=GENERATOR></HEAD><body leftmargin="15"><table border="0" cellpadding="0" cellspacing="0" width="560">  <tr>    <td>      <table border="0" cellpadding="0" cellspacing="0" width="100%">        <tr>          <td width="50%"><b>例3</b>(补充,例5-1)</td>          <td width="50%" rowspan="5">            <p align="center"><img border="0" src="pic2/3072_36.GIF" width="277" height="193"></td>        </tr>        <tr>          <td width="50%">图示系统。均质滚子A、滑轮B重量和半径均为Q和r,滚子纯滚动,三角块固定不动,倾角为α,重物重量P。求滚子质心加速度。</td>        </tr>        <tr>          <td width="50%"><b>分析:</b></td>        </tr>        <tr>          <td width="50%">系统为1个自由度保守系统,故用保守系统拉格朗日方程求解:</td>        </tr>        <tr>          <td width="50%"><img border="0" src="pic2/3072_37.GIF" width="243" height="51"></td>        </tr>      </table>    </td>  </tr>  <tr>    <td>选广义坐标 s ,写任意位置下系统的拉格朗日函数(L = T -V ),由上式可写1个方程,</td>    </tr>    <tr>      <td>        <table border="0" cellpadding="0" cellspacing="0">          <tr>            <td>其中含待求量&nbsp;</td>            <td><img border="0" src="pic2/3072_38.GIF" width="15" height="21"></td>            <td>       即为所求。</td>          </tr>        </table>      </td>    </tr>    <tr>      <td>        <table border="0" cellpadding="0" cellspacing="0" width="100%">          <tr>            <td width="50%"><b>解:</b></td>            <td width="50%" rowspan="5"><img border="0" src="pic2/3072_314.GIF" width="277" height="193"></td>          </tr>          <tr>            <td width="50%">设重物从静止上升s,选s为广义坐标。</td>          </tr>          <tr>            <td width="50%">在任意位置时系统动能:</td>          </tr>          <tr>            <td width="50%"><img border="0" src="pic2/3072_315.GIF" width="327" height="96"></td>          </tr>          <tr>            <td width="50%">设系统起始位置为0势能位置,系统势能为:</td>          </tr>        </table>      </td>    </tr>    <tr>      <td><img border="0" src="pic2/3072_316.GIF" width="120" height="24"></td>    </tr>    <tr>      <td>        <table border="0" cellpadding="0" cellspacing="0">          <tr>            <td>则拉格朗日函数:&nbsp;&nbsp;&nbsp;&nbsp;</td>            <td><img border="0" src="pic2/3072_317.GIF" width="255" height="47"></td>          </tr>          <tr>            <td>拉格朗日方程:&nbsp;&nbsp;&nbsp;&nbsp;</td>            <td><img border="0" src="pic2/3072_318.GIF" width="122" height="51"></td>          </tr>        </table>      </td>    </tr>    <tr>      <td>其中:</td>    </tr>    <tr>      <td><img border="0" src="pic2/3072_319.GIF" width="251" height="55">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;         <img border="0" src="pic2/3072_320.GIF" width="146" height="51"></td>    </tr>    <tr>      <td>        <table border="0" cellpadding="0" cellspacing="0">          <tr>            <td>则:&nbsp;&nbsp;</td>            <td><img border="0" src="pic2/3072_321.GIF" width="231" height="55"></td>            <td><img border="0" src="pic2/3072_322.GIF" width="201" height="56"></td>          </tr>        </table>      </td>    </tr>    <tr>      <td>        <table border="0" cellpadding="0" cellspacing="0">          <tr>            <td>即:&nbsp;&nbsp;</td>            <td><img border="0" src="pic2/3072_323.GIF" width="149" height="55"></td>          </tr>        </table>      </td>    </tr>    <tr>      <td>事实上,拉格朗日方程最拿手的还不是上面1个自由度系统的动力学问题,而是多自由度系统问题,如下例。</td>    </tr>    <tr>      <td></td>    </tr>    <tr>      <td></td>    </tr>    <tr>      <td>        <p align="center"> <a href="3072_2.htm"><font color="#FF6666">[ 上一节 ]</font></a> &nbsp;&nbsp;       <a href="3072_3.htm">↑上一页↑</a> &nbsp;&nbsp; <a href="3072_32.htm">↓下一页↓</a>       &nbsp;  <a href="3080.htm"><font color="#00CC00">[ 下一节 ]</font></a>        </td>   </tr> </table> </BODY></HTML>                                                            

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -