⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 3071_2.htm

📁 转载别人的作为下载源
💻 HTM
字号:
<HTML><HEAD><TITLE>new</TITLE><META content="text/html; charset=gb2312" http-equiv=Content-Type><LINK href="text.css" rel=stylesheet type=text/css><META content="Microsoft FrontPage 4.0" name=GENERATOR></HEAD><body leftmargin="15"><center><b><br>2 自由度 广义坐标</b></center>    <table border="0" cellpadding="0" cellspacing="0" width="560">     <tr>       <td width="20"><b><font color="#0000FF">一、</font></b></td>       <td width="540"><b><font color="#0000FF">自由度</font></b></td>     </tr>     <tr>       <td width="20"></td>       <td width="540">具有完整约束的质点系,确定其位置的独立坐标数,称为<b>自由度</b>或<b>自由度数</b>。</td>     </tr>     <tr>       <td width="20"></td>       <td width="540"><b>自由度的计算:</b></td>     </tr>     <tr>       <td width="20"></td>       <td width="540">         <table border="0" cellpadding="0" cellspacing="0" width="100%">           <tr>             <td width="55%"><u>1. 以质点作为基本单元</u></td>              <td width="45%" rowspan="5">               <p align="center"><img border="0" src="pic2/3071_21.GIF" width="235" height="108"></td>           </tr>           <tr>             <td width="55%">曲柄连杆机构:</td>           </tr>           <tr>             <td width="55%">自由质点系:A、B;自由度 = 2×2 = 4</td>            </tr>            <tr>              <td width="55%">               <table border="0" cellpadding="0" cellspacing="0">                 <tr>                   <td>约束方程:</td>                   <td rowspan="2"><img border="0" src="pic2/3071_22.GIF" width="201" height="57"></td>                 </tr>                 <tr>                   <td>约束数 = 3</td>                  </tr>                </table>              </td>            </tr>            <tr>              <td width="55%"></td>           </tr>         </table>       </td>     </tr>     <tr>       <td width="20"></td>       <td width="540">质点系自由度 = 4 — 3 = 1</td>      </tr>      <tr>        <td width="20"></td>       <td width="540">         <table border="1" cellpadding="0" cellspacing="0" bordercolor="#FF0000">           <tr>             <td>质点系自由度 = 自由质点系自由度 — 约束(方程)数</td>            </tr>          </table>        </td>      </tr>      <tr>        <td width="20"></td>       <td width="540">         <table border="0" cellpadding="0" cellspacing="0" width="101%">           <tr>             <td width="54%"><u>2. 以刚体作为基本单元</u></td>             <td width="47%" rowspan="6">              <p align="center"><img border="0" src="pic2/3071_23.GIF" width="235" height="106"></td>          </tr>          <tr>            <td width="54%">自由刚体系:OA、AB;自由度 = 3×2 = 6</td>            </tr>            <tr>              <td width="54%">               <table border="0" cellpadding="0" cellspacing="0">                 <tr>                   <td>约束方程:</td>                  <td rowspan="2"><img border="0" src="pic2/3071_24.GIF" width="208" height="60"></td>                </tr>                <tr>                  <td>约束数=5</td>                 </tr>               </table>             </td>           </tr>           <tr>             <td width="54%"></td>          </tr>          <tr>            <td width="54%">质点系自由度 = 6 — 5 = 1</td>            </tr>            <tr>              <td width="54%"></td>           </tr>         </table>       </td>     </tr>     <tr>       <td width="20"></td>       <td width="540">         <table border="1" cellpadding="0" cellspacing="0" bordercolor="#FF0000">           <tr>             <td>质点系自由度 = 自由刚体系自由度 — 约束(方程)数</td>            </tr>          </table>        </td>      </tr>      <tr>        <td width="20"></td>       <td width="540"><b>上述方法很麻烦,特别是约束较多而自由度较少时,可采用以下实用方法:</b></td>    </tr>    <tr>      <td width="20"></td>      <td width="540">        <table border="0" cellpadding="0" cellspacing="0" width="100%">          <tr>            <td width="100%" colspan="2">①固定质点系中任意质点或刚体的任一方向的运动,若其他质点和刚体都不会运动,则自由度为1,如图(1);</td>          </tr>          <tr>            <td width="100%" colspan="2">②否则,再固定质点系中质点或刚体的另一方向的运动,若其他质点和刚体都不会运动,则自由度为2,如图(2);</td>          </tr>          <tr>            <td width="50%">              <p align="center"><img border="0" src="pic2/3071_5F25.GIF" width="235" height="122"></td>            <td width="50%" align="center"><img border="0" src="pic2/3071_26.GIF" width="194" height="165"></td>          </tr>        </table>      </td>    </tr>    <tr>      <td width="20"><b><font color="#0000FF">二、</font></b></td>      <td width="540"><b><font color="#0000FF">广义坐标</font></b></td>    </tr>    <tr>      <td width="20"></td>      <td width="540"><b>引入广义坐标的意义:</b></td>    </tr>    <tr>      <td width="20"></td>      <td width="540">如前面例子,当系统自由度较少、约束较多时,用直角坐标和约束方程表示质点系的运动很麻烦,故引入广义坐标。</td>    </tr>    <tr>      <td width="20"></td>      <td width="540">如图(1)中,可选φ为广义坐标;图(2)中,可选φ1、φ2为广义坐标。</td>    </tr>    <tr>      <td width="20"></td>      <td width="540">确定质系位置的独立参变量,称为<b>广义坐标</b>。可为任意坐标,如直角坐标和非直角坐标。</td>    </tr>    <tr>      <td width="20"></td>      <td width="540">        <table border="0" cellpadding="0" cellspacing="0">          <tr>            <td bgcolor="#00FFFF">完整约束下,广义坐标数=自由度数目。</td>          </tr>        </table>      </td>    </tr>    <tr>      <td width="20"></td>      <td width="540">所有直角坐标均可用广义坐标表示:</td>    </tr>    <tr>      <td width="20"></td>      <td width="540"><img border="0" src="pic2/3071_27.GIF" width="445" height="81"></td>    </tr>    <tr>      <td width="20"></td>      <td width="540">        <table border="0" cellpadding="0" cellspacing="0">          <tr>            <td>或:</td>            <td>&nbsp; <img border="0" src="pic2/3071_28.GIF" width="259" height="26"></td>           </tr>         </table>       </td>     </tr>     <tr>       <td width="20"></td>       <td width="540"></td>     </tr>     <tr>       <td width="20"></td>       <td width="540"></td>     </tr>     <tr>       <td width="560" colspan="2">        <p align="center"> <a href="3071_1.htm"><font color="#FF6666">[ 上一节 ]</font></a> &nbsp;  <a href="3071_3.htm"><font color="#00CC00">[ 下一节 ]</font></a>        </td>    </tr>  </table>  </BODY></HTML>                                                             

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -