⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 3042.htm

📁 转载别人的作为下载源
💻 HTM
字号:
<HTML><HEAD><TITLE>new</TITLE><META content="text/html; charset=gb2312" http-equiv=Content-Type><LINK href="text.css" rel=stylesheet type=text/css><META content="Microsoft FrontPage 4.0" name=GENERATOR></HEAD><body leftmargin="15"><center><b><br>2 刚体的转动惯量</b></center>      <table border="0" cellpadding="0" cellspacing="0" width="560">       <tr>         <td width="20"></td>         <td width="540">我们知道,质量是质点惯性的度量。</td>       </tr>       <tr>         <td width="20"></td>         <td width="540">           <table border="0" cellpadding="0" cellspacing="0">             <tr>               <td bgcolor="#FF00FF">                 <table border="0" cellspacing="1">                   <tr>                     <td bgcolor="#FFFFFF">问题①: 对质点系,质量是什么的度量?</td>                    </tr>                  </table>                </td>              </tr>            </table>          </td>        </tr>        <tr>          <td width="20"></td>         <td width="540">——质系随质心平动惯性的度量。当质系不受任何外力时,其质心保持匀速直线运动。</td>       </tr>       <tr>         <td width="20"></td>         <td width="540">           <table border="0" cellspacing="0" cellpadding="0">            <tr>              <td bgcolor="#FF00FF">                <table border="0" cellspacing="1">                  <tr>                    <td bgcolor="#FFFFFF">问题②:&nbsp;<br>     对转动刚体,如无外力偶,将保持匀速转动,即其有“转动惯性”,如何度量其转动惯性?</td>                  </tr>                </table>              </td>            </tr>          </table>        </td>      </tr>      <tr>        <td width="20"></td>        <td width="540">——刚体对轴的转动惯量。</td>      </tr>      <tr>        <td width="20"><font color="#0000FF"><b>一、</b></font></td>       <td width="540"><b><font color="#0000FF">刚体对轴的转动惯量</font></b></td>     </tr>     <tr>       <td width="20"></td>       <td width="540">         <table border="0" cellspacing="0" width="100%" cellpadding="0">           <tr>             <td width="50%">刚体对(z)轴的<b>转动惯量</b>:</td>             <td width="50%" rowspan="5">               <p align="center"><img border="0" src="pic/3042.h18.gif" width="190" height="171"></td>          </tr>          <tr>            <td width="50%"><img border="0" src="pic/3042.h19.gif" width="135" height="30"></td>          </tr>          <tr>            <td width="50%">其中ρ<font size="1">z</font>是刚体对(z)轴的<b>回转半径(惯性半径)</b></td>         </tr>         <tr>           <td width="50%">             <table border="0" cellpadding="0" cellspacing="0">               <tr>                 <td>连续体表达式:</td>                 <td><img border="0" src="pic/3042.h20.gif" width="87" height="37"></td>               </tr>             </table>           </td>         </tr>         <tr>           <td width="50%">直角坐标下刚体对(z)轴的<b>转动惯量</b>:</td>         </tr>       </table>     </td>   </tr>   <tr>     <td width="20"></td>     <td width="540"><img border="0" src="pic/3042.h21.gif" width="147" height="33"></td>   </tr>   <tr>     <td width="20"></td>     <td width="540">       <table border="0" cellpadding="0" cellspacing="0">         <tr>           <td>此时连续体表达式:</td>           <td><img border="0" src="pic/3042.h22.gif" width="162" height="40"></td>         </tr>       </table>     </td>   </tr>   <tr>     <td width="20"><font color="#0000FF"><b>二、</b></font></td>     <td width="540"><b><font color="#0000FF">刚体对点的极转动惯量</font></b></td>   </tr>   <tr>     <td width="20"></td>     <td width="540">       <table border="0" cellpadding="0" cellspacing="0" width="100%">         <tr>           <td width="50%"><img border="0" src="pic/3042.h23.gif" width="249" height="32"></td>           <td width="50%" rowspan="4">             <p align="center"><img border="0" src="pic/3042.h24.gif" width="209" height="154"></td>         </tr>         <tr>           <td width="50%">连续体写法:</td>         </tr>         <tr>           <td width="50%"><img border="0" src="pic/3042.h25.gif" width="194" height="39"></td>         </tr>         <tr>           <td width="50%">             <table border="0" cellpadding="0" cellspacing="0">               <tr>                 <td>可证:</td>                 <td><img border="0" src="pic/3042.h26.gif" width="159" height="49"></td>               </tr>             </table>           </td>         </tr>       </table>     </td>   </tr>   <tr>     <td width="20"></td>     <td width="540">       <table border="0" cellpadding="0" cellspacing="0">         <tr>           <td>对平板:</td>           <td><img border="0" src="pic/3042.h27.gif" width="95" height="32"></td>         </tr>       </table>     </td>   </tr>   <tr>     <td width="20"><font color="#0000FF"><b>三、</b></font></td>     <td width="540"><b><font color="#0000FF">平行轴定理</font></b></td>   </tr>   <tr>     <td width="20"></td>     <td width="540">       <table border="0" cellpadding="0" cellspacing="0" width="100%">         <tr>           <td width="50%">             <p align="center"><img border="0" src="pic/3042.h28.gif" width="176" height="160"></td>           <td width="50%"><img border="0" src="pic/3042.h29.gif" width="127" height="40"></td>         </tr>       </table>     </td>   </tr>   <tr>     <td width="20"><font color="#0000FF"><b>四、</b></font></td>     <td width="540"><font color="#0000FF"><b>刚体转动惯量的求法&nbsp;&nbsp;        </b></font><font color="#FF6699">类似求重心方法,有以下几种。</font></td>    </tr>    <tr>      <td width="20"></td>      <td width="540"><u>1. 直接积分法</u></td>      </tr>      <tr>        <td width="20"></td>        <td width="540">对连续刚体,由定义积分求。有时用到极转动惯量的概念。</td>      </tr>      <tr>        <td width="20"></td>        <td width="540"><b>常见规则图形刚体的转动惯量:</b>(其余见附录1   P404)</td>      </tr>      <tr>        <td width="20"></td>        <td width="540">          <table border="0" cellpadding="0" cellspacing="0" width="100%">           <tr>             <td width="34%" align="center">①均质细长杆:</td>             <td width="33%" align="center">②均质圆盘:</td>             <td width="33%" align="center" rowspan="3"><img border="0" src="pic/3042.h30.gif" width="144" height="156"></td>          </tr>          <tr>            <td width="34%" align="center"><img border="0" src="pic/3042.h31.gif" width="198" height="63"></td>            <td width="33%" align="center"><img border="0" src="pic/3042.h32.gif" width="89" height="48"></td>          </tr>          <tr>            <td width="34%" align="center">              <table border="0" cellpadding="0" cellspacing="0">                <tr>                  <td><img border="0" src="pic/3042.h33.gif" width="91" height="48"></td>                  <td><img border="0" src="pic/3042.h34.gif" width="82" height="48"></td>                </tr>              </table>            </td>            <td width="33%" align="center"><img border="0" src="pic/3042.h35.gif" width="116" height="48"></td>          </tr>        </table>      </td>    </tr>    <tr>      <td width="20"></td>      <td width="540"><u>2. 组合法</u></td>      </tr>      <tr>        <td width="20"></td>        <td width="540">          <table border="0" cellpadding="0" cellspacing="0">           <tr>             <td>利用平行轴定理和</td>             <td><img border="0" src="pic/3042.h36.gif" width="79" height="31"></td>            <td>来求。对挖去部分,可令其转动惯量为负。</td>          </tr>        </table>      </td>    </tr>    <tr>      <td width="20"></td>      <td width="540"><u>3. 实验法</u></td>      </tr>      <tr>        <td width="20"></td>        <td width="540">          <table border="0" cellpadding="0" cellspacing="0" width="100%">           <tr>             <td width="50%" colspan="2">               <p align="center">利用振动方程</td>             <td width="50%">               <p align="center">利用刚体转动微分方程</td>           </tr>           <tr>             <td width="50%" colspan="2">               <p align="center"><img border="0" src="pic/3042.h37.gif" width="134" height="13"></td>            <td width="50%">              <p align="center"><img border="0" src="pic/3042.h38.gif" width="134" height="13"></td>          </tr>          <tr>            <td width="25%" align="center">① 扭振法</td>             <td width="25%" align="center">② 摆振法</td>             <td width="50%" align="center">③ 落体法(P241 题5-32)</td>           </tr>         </table>       </td>     </tr>     <tr>       <td width="20"></td>       <td width="540"></td>     </tr>     <tr>       <td width="560" colspan="2">       <p align="center"> <a href="3041.htm"><font color="#FF6666">[ 上一节 ]</font></a> &nbsp;  <a href="3051_1.htm"><font color="#00CC00">[ 下一节 ]</font></a>       </td>    </tr>  </table>  </BODY></HTML>                                                             

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -