⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 3052_4.htm

📁 转载别人的作为下载源
💻 HTM
字号:
<HTML><HEAD><TITLE>new</TITLE><META content="text/html; charset=gb2312" http-equiv=Content-Type><LINK href="text.css" rel=stylesheet type=text/css><META content="Microsoft FrontPage 4.0" name=GENERATOR></HEAD><body leftmargin="15"><center><b><br>4 质心运动定理</b></center>   <table border="0" cellpadding="0" cellspacing="0" width="560">    <tr>      <td width="20"></td>      <td width="540">质心运动定理是动量定理的另一种表达形式,重要而实用。</td>    </tr>    <tr>      <td width="20">一、</td>      <td width="540">质心运动定理</td>    </tr>    <tr>      <td width="20"></td>      <td width="540">        <table border="0" cellpadding="0" cellspacing="0" width="100%">          <tr>            <td width="25%" align="center">动量定理微分形式:</td>           <td width="25%" align="center"><img border="0" src="pic/3052_437.GIF"></td>           <td width="25%" align="center"><img border="0" src="pic/3052_438.GIF"></td>           <td width="25%" align="center"><img border="0" src="pic/3052_439.GIF"></td>         </tr>         <tr>           <td width="25%" align="center"><img border="0" src="pic/3052_440.GIF"></td>           <td width="25%" align="center"><img border="0" src="pic/3052_441.GIF"></td>           <td width="25%" align="center">——质心运动定理</td>           <td width="25%" align="center"></td>         </tr>       </table>     </td>   </tr>   <tr>     <td width="20"></td>     <td width="540"><b>注:</b><br>       ①此定理与动量定理完全等价,都反映质系随质心平动部分与所受外力主矢之间的关系,但形式和所用物理量不同。质心运动定理已不再使用动量和冲量的概念;</td>   </tr>   <tr>     <td width="20"></td>     <td width="540">②形式与牛二定律(动力学基本方程)相同,但含义不同;</td>   </tr>   <tr>     <td width="20"></td>     <td width="540">③适于任意质点系;</td>   </tr>   <tr>     <td width="20"></td>     <td width="540">       <table border="0" cellpadding="0" cellspacing="0">         <tr>           <td>④对刚体系,由于</td>           <td><img border="0" src="pic/3052_442.GIF"></td>           <td>,式中</td>           <td><img border="0" src="pic/3052_443.GIF"></td>           <td>表示每个刚体的质量和质心</td>         </tr>       </table>     </td>   </tr>   <tr>     <td width="20"></td>     <td width="540">       <table border="0" cellpadding="0" cellspacing="0">         <tr>           <td>的加速度,则质心运动定理又可写为</td>           <td>&nbsp;&nbsp;&nbsp; <img border="0" src="pic/3052_444.GIF"></td>          </tr>        </table>      </td>    </tr>    <tr>      <td width="20"></td>      <td width="540">        <table border="0" cellpadding="0" cellspacing="0" width="100%">          <tr>            <td width="50%">例4(例1,用质心运动定理求反力)</td>            <td width="50%" rowspan="5">              <p align="center"><img border="0" src="pic/3052_445.GIF"></td>          </tr>          <tr>            <td width="50%"></td>          </tr>          <tr>            <td width="50%">图示系统。均质滚子A、滑轮B重量和半径均为Q和r,滚子纯滚动,三角块固定不动,倾角为α,重量为G,重物重量P。求地面给三角块的反力。</td>          </tr>          <tr>            <td width="50%">注:需先用动能定理求各刚体质心加速度,再用下面形式质心运动定理求反力:</td>          </tr>          <tr>            <td width="50%">              <p align="center"><img border="0" src="pic/3052_446.GIF"></td>          </tr>        </table>      </td>    </tr>    <tr>      <td width="20"><b><font color="#0000FF">二、</font></b></td>      <td width="540"><b><font color="#0000FF">质心运动守恒</font></b></td>    </tr>    <tr>      <td width="20"></td>      <td width="540">        <table border="0" cellpadding="0" cellspacing="0">          <tr>            <td><b>质心运动定理:&nbsp;&nbsp;</b>&nbsp;&nbsp;</td>            <td><img border="0" src="pic/3052_447.GIF"></td>          </tr>        </table>      </td>    </tr>    <tr>      <td width="20"></td>      <td width="540">        <table border="0" cellpadding="0" cellspacing="0" width="100%">          <tr>            <td width="7%" align="center"><img border="0" src="pic/3052_448.GIF"></td>            <td width="15%" align="center"><img border="0" src="pic/3052_449.GIF"></td>            <td width="20%" align="center"><img border="0" src="pic/3052_450.GIF"></td>            <td width="27%" align="center"><img border="0" src="pic/3052_451.GIF"></td>            <td width="31%" align="center"><b>——质点系质心运动守恒</b></td>          </tr>          <tr>            <td width="7%" align="center"></td>            <td width="15%" align="center"></td>            <td width="20%" align="center"><img border="0" src="pic/3052_452.GIF"></td>            <td width="27%" align="center"><img border="0" src="pic/3052_453.GIF"></td>            <td width="31%" align="center"><b>——质点系质心位置不变</b></td>          </tr>          <tr>            <td width="7%" align="center"></td>            <td width="15%" align="center"><img border="0" src="pic/3052_454.GIF"></td>            <td width="20%" align="center"><img border="0" src="pic/3052_455.GIF"></td>            <td width="27%" align="center"><img border="0" src="pic/3052_456.GIF"></td>            <td width="31%" align="center"><b>——质点系质心在x方向上运动守恒</b></td>          </tr>          <tr>            <td width="7%" align="center"></td>            <td width="15%" align="center"></td>            <td width="20%" align="center"><img border="0" src="pic/3052_457.GIF"></td>            <td width="27%" align="center"><img border="0" src="pic/3052_458.GIF"></td>            <td width="31%" align="center"><b>——质点系质心在x方向上位置不变</b></td>          </tr>        </table>      </td>    </tr>    <tr>      <td width="20"></td>      <td width="540">注:质心运动守恒多用于求初始静止的系统,满足守恒条件,经过一段时间后某个物体的位移;而动量守恒定律多用于求速度。</td>    </tr>    <tr>      <td width="20"></td>      <td width="540">        <table border="0" cellpadding="0" cellspacing="0" width="100%">          <tr>            <td width="50%">例5(接例3,用质心运动守恒求位移)</td>            <td width="50%" rowspan="2">              <p align="center"><img border="0" src="pic/3052_459.GIF"></td>          </tr>          <tr>            <td width="50%">图示系统。均质滚子A、滑轮B重量和半径均为Q和r,滚子纯滚动,三角块放在光滑平面上,倾角为α,重量为G,重物重量P。系统初始静止。求重物上升s时,三角块的位移s1 。设重物相对三角块铅直运动,滚子与斜面不脱开。</td>           </tr>         </table>       </td>     </tr>     <tr>       <td width="20"></td>      <td width="540">        <table border="0" cellpadding="0" cellspacing="0" width="100%">          <tr>            <td width="50%">例6(例5-10   较难,需综合运动质心运动守恒、动能定理、质心运动定理及较多的运动学分析)</td>             <td width="50%" rowspan="2">              <p align="center"><img border="0" src="pic/3052_460.GIF"></td>          </tr>          <tr>            <td width="50%">均质细杆AB长l,质量为m,B端放在光滑水平面上。初始时杆静止,立于铅直位置,受扰后在铅直面内倒下。求杆运动到与铅直线成φ角时,杆的角速度、角加速度和地面的反力。</td>          </tr>        </table>      </td>    </tr>    <tr>      <td width="20"></td>      <td width="540"></td>    </tr>    <tr>      <td width="20"></td>      <td width="540"></td>    </tr>    <tr>      <td width="560" colspan="2">       <p align="center"> <a href="3052_3.htm"><font color="#FF6666">[ 上一节 ]</font></a> &nbsp;  <a href="3053_1.htm"><font color="#00CC00">[ 下一节 ]</font></a>       </td>   </tr> </table> </BODY></HTML>                                                            

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -