📄 3052_4.htm
字号:
<HTML><HEAD><TITLE>new</TITLE><META content="text/html; charset=gb2312" http-equiv=Content-Type><LINK href="text.css" rel=stylesheet type=text/css><META content="Microsoft FrontPage 4.0" name=GENERATOR></HEAD><body leftmargin="15"><center><b><br>4 质心运动定理</b></center> <table border="0" cellpadding="0" cellspacing="0" width="560"> <tr> <td width="20"></td> <td width="540">质心运动定理是动量定理的另一种表达形式,重要而实用。</td> </tr> <tr> <td width="20">一、</td> <td width="540">质心运动定理</td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="25%" align="center">动量定理微分形式:</td> <td width="25%" align="center"><img border="0" src="pic/3052_437.GIF"></td> <td width="25%" align="center"><img border="0" src="pic/3052_438.GIF"></td> <td width="25%" align="center"><img border="0" src="pic/3052_439.GIF"></td> </tr> <tr> <td width="25%" align="center"><img border="0" src="pic/3052_440.GIF"></td> <td width="25%" align="center"><img border="0" src="pic/3052_441.GIF"></td> <td width="25%" align="center">——质心运动定理</td> <td width="25%" align="center"></td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"><b>注:</b><br> ①此定理与动量定理完全等价,都反映质系随质心平动部分与所受外力主矢之间的关系,但形式和所用物理量不同。质心运动定理已不再使用动量和冲量的概念;</td> </tr> <tr> <td width="20"></td> <td width="540">②形式与牛二定律(动力学基本方程)相同,但含义不同;</td> </tr> <tr> <td width="20"></td> <td width="540">③适于任意质点系;</td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td>④对刚体系,由于</td> <td><img border="0" src="pic/3052_442.GIF"></td> <td>,式中</td> <td><img border="0" src="pic/3052_443.GIF"></td> <td>表示每个刚体的质量和质心</td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td>的加速度,则质心运动定理又可写为</td> <td> <img border="0" src="pic/3052_444.GIF"></td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="50%">例4(例1,用质心运动定理求反力)</td> <td width="50%" rowspan="5"> <p align="center"><img border="0" src="pic/3052_445.GIF"></td> </tr> <tr> <td width="50%"></td> </tr> <tr> <td width="50%">图示系统。均质滚子A、滑轮B重量和半径均为Q和r,滚子纯滚动,三角块固定不动,倾角为α,重量为G,重物重量P。求地面给三角块的反力。</td> </tr> <tr> <td width="50%">注:需先用动能定理求各刚体质心加速度,再用下面形式质心运动定理求反力:</td> </tr> <tr> <td width="50%"> <p align="center"><img border="0" src="pic/3052_446.GIF"></td> </tr> </table> </td> </tr> <tr> <td width="20"><b><font color="#0000FF">二、</font></b></td> <td width="540"><b><font color="#0000FF">质心运动守恒</font></b></td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0"> <tr> <td><b>质心运动定理: </b> </td> <td><img border="0" src="pic/3052_447.GIF"></td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="7%" align="center"><img border="0" src="pic/3052_448.GIF"></td> <td width="15%" align="center"><img border="0" src="pic/3052_449.GIF"></td> <td width="20%" align="center"><img border="0" src="pic/3052_450.GIF"></td> <td width="27%" align="center"><img border="0" src="pic/3052_451.GIF"></td> <td width="31%" align="center"><b>——质点系质心运动守恒</b></td> </tr> <tr> <td width="7%" align="center"></td> <td width="15%" align="center"></td> <td width="20%" align="center"><img border="0" src="pic/3052_452.GIF"></td> <td width="27%" align="center"><img border="0" src="pic/3052_453.GIF"></td> <td width="31%" align="center"><b>——质点系质心位置不变</b></td> </tr> <tr> <td width="7%" align="center"></td> <td width="15%" align="center"><img border="0" src="pic/3052_454.GIF"></td> <td width="20%" align="center"><img border="0" src="pic/3052_455.GIF"></td> <td width="27%" align="center"><img border="0" src="pic/3052_456.GIF"></td> <td width="31%" align="center"><b>——质点系质心在x方向上运动守恒</b></td> </tr> <tr> <td width="7%" align="center"></td> <td width="15%" align="center"></td> <td width="20%" align="center"><img border="0" src="pic/3052_457.GIF"></td> <td width="27%" align="center"><img border="0" src="pic/3052_458.GIF"></td> <td width="31%" align="center"><b>——质点系质心在x方向上位置不变</b></td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540">注:质心运动守恒多用于求初始静止的系统,满足守恒条件,经过一段时间后某个物体的位移;而动量守恒定律多用于求速度。</td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="50%">例5(接例3,用质心运动守恒求位移)</td> <td width="50%" rowspan="2"> <p align="center"><img border="0" src="pic/3052_459.GIF"></td> </tr> <tr> <td width="50%">图示系统。均质滚子A、滑轮B重量和半径均为Q和r,滚子纯滚动,三角块放在光滑平面上,倾角为α,重量为G,重物重量P。系统初始静止。求重物上升s时,三角块的位移s1 。设重物相对三角块铅直运动,滚子与斜面不脱开。</td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"> <table border="0" cellpadding="0" cellspacing="0" width="100%"> <tr> <td width="50%">例6(例5-10 较难,需综合运动质心运动守恒、动能定理、质心运动定理及较多的运动学分析)</td> <td width="50%" rowspan="2"> <p align="center"><img border="0" src="pic/3052_460.GIF"></td> </tr> <tr> <td width="50%">均质细杆AB长l,质量为m,B端放在光滑水平面上。初始时杆静止,立于铅直位置,受扰后在铅直面内倒下。求杆运动到与铅直线成φ角时,杆的角速度、角加速度和地面的反力。</td> </tr> </table> </td> </tr> <tr> <td width="20"></td> <td width="540"></td> </tr> <tr> <td width="20"></td> <td width="540"></td> </tr> <tr> <td width="560" colspan="2"> <p align="center"> <a href="3052_3.htm"><font color="#FF6666">[ 上一节 ]</font></a> <a href="3053_1.htm"><font color="#00CC00">[ 下一节 ]</font></a> </td> </tr> </table> </BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -