⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 3070.htm

📁 转载别人的作为下载源
💻 HTM
字号:
<HTML><HEAD><TITLE>new</TITLE><META content="text/html; charset=gb2312" http-equiv=Content-Type><LINK href="text.css" rel=stylesheet type=text/css><META content="Microsoft FrontPage 4.0" name=GENERATOR></HEAD><body leftmargin="15"><center><b><br>前言</b></center><table border="0" cellpadding="0" cellspacing="0" width="560">  <tr>    <td>      <table border="0" cellpadding="0" cellspacing="0" width="100%">        <tr>          <td width="50%" colspan="2"><b>例A:考虑解题步骤</b></td>          <td width="50%" rowspan="5">            <p align="center"><img border="0" src="pic2/3070.h49.gif" width="201" height="206"></td>        </tr>        <tr>          <td width="25%">如图,系统平衡。已知Q、l、α,求P。</td>           <td width="25%" rowspan="4"><img border="0" src="pic2/3070.h50.gif" width="178" height="122"></td>        </tr>        <tr>          <td width="25%">分析:</td>        </tr>        <tr>          <td width="25%">1. 欲求P,可通过图(c)求,但NC、SBE未知;</td>           </tr>           <tr>             <td width="25%">2. NC可通过整体求,图(a);</td>           </tr>         </table>       </td>     </tr>     <tr>       <td>3. SBE可通过AEB求,图(b)。</td>     </tr>     <tr>       <td>         <table border="0" cellpadding="0" cellspacing="0" width="100%">          <tr>            <td width="33%"><b>解:</b></td>            <td width="33%" rowspan="7">              <p align="center"><img border="0" src="pic2/3070.h51.gif" width="178" height="233"></td>            <td width="34%" rowspan="7">              <p align="center"><img border="0" src="pic2/3070.h52.gif" width="180" height="167"></td>          </tr>          <tr>            <td width="33%">              <table border="0" cellpadding="0" cellspacing="0">                <tr>                  <td><font color="#FF00FF">1.整体:</font>&nbsp;&nbsp;&nbsp;</td>                  <td><img border="0" src="pic2/3070.h53.gif" width="101" height="33"></td>                </tr>                <tr>                  <td></td>                  <td><img border="0" src="pic2/3070.h54.gif" width="62" height="33"></td>                </tr>              </table>            </td>          </tr>          <tr>            <td width="33%"><font color="#FF00FF">2. E点(或BE、AE及重物)</font></td>           </tr>           <tr>             <td width="33%"><img border="0" src="pic2/3070.h55.gif" width="126" height="26"></td>          </tr>          <tr>            <td width="33%"><img border="0" src="pic2/3070.h56.gif" width="66" height="29"></td>          </tr>          <tr>            <td width="33%"><font color="#FF00FF">3. BC和滑块C</font></td>           </tr>           <tr>             <td width="33%"></td>          </tr>        </table>      </td>    </tr>    <tr>      <td><img border="0" src="pic2/3070.h57.gif" width="101" height="31"> <img border="0" src="pic2/3070.h58.gif" width="52" height="27"></td>    </tr>    <tr>      <td>        <table border="1" cellpadding="0" cellspacing="0" bordercolor="#800080">          <tr>            <td>结论:取3个分离体,列4个方程&nbsp;&nbsp;&nbsp;&nbsp; ——较繁,尚可忍受!</td>          </tr>        </table>      </td>    </tr>    <tr>      <td>        <table border="0" cellpadding="0" cellspacing="0" width="100%">          <tr>            <td width="50%"><b>例B:考虑解题步骤</b></td>            <td width="50%" rowspan="8">              <p align="center"><img border="0" src="pic2/3070.h59.gif" width="183" height="307"></td>          </tr>          <tr>            <td width="50%">如图,系统平衡。已知Q、l、&#61537; ,求P。</td>           </tr>           <tr>             <td width="50%">              <table border="1" cellpadding="0" cellspacing="0" bordercolor="#800080">                <tr>                  <td>分离体太多!中间未知量太多!方程太多!<br>                    ——太繁!不能忍受 !!!</td>                 </tr>               </table>             </td>           </tr>           <tr>             <td width="50%"><b>怎么办?分析问题特点,引入新的求解思想:</b></td>          </tr>          <tr>            <td width="50%"><u>结构特点</u>:几何可变体系。<br>              <u>待求量特点</u>:较少,且具有主动力的性质。<br>              <u>拓展思路</u>:可否直接建立P和Q 的关系?可否避开求中间反力?可否从动力学方程考虑?</td>           </tr>           <tr>             <td width="50%">&nbsp;</td>          </tr>          <tr>            <td width="50%"><font color="#FF00FF">动量定理    或<br>               质心运动定理</font></td>           </tr>           <tr>             <td width="50%">              <table border="0" cellpadding="0" cellspacing="0">                <tr>                  <td><img border="0" src="pic2/3070.h60.gif" width="93" height="51"></td>                  <td>&nbsp; 或&nbsp;&nbsp;</td>                  <td><img border="0" src="pic2/3070.h61.gif" width="105" height="32"></td>                </tr>              </table>            </td>          </tr>        </table>      </td>    </tr>    <tr>      <td>        <table border="0" cellpadding="0" cellspacing="0">          <tr>            <td></td>            <td colspan="2">              <p align="center"><img border="0" src="pic2/3070.h62.gif" width="129" height="33"></td>            <td rowspan="2"><img border="0" src="pic2/3070.h63.gif" width="13" height="82"></td>            <td rowspan="2">&nbsp; 还是静力学方程,无意义</td>          </tr>          <tr>            <td><font color="#008000">动量矩定理:</font>&nbsp;&nbsp;&nbsp;</td>            <td><img border="0" src="pic2/3070.h64.gif" width="120" height="52"></td>            <td><img border="0" src="pic2/3070.h65.gif" width="139" height="39"></td>          </tr>        </table>      </td>    </tr>    <tr>      <td><font color="#800000">达朗伯原理?</font>仍然会得到纯静力学方程,也无效!</td>    </tr>    <tr>      <td><font color="#0000FF">动能定理</font>  假设系统有一小的位移&nbsp;&nbsp;&nbsp;         ---→ <b>虚位移</b></td>    </tr>    <tr>      <td>        <table border="0" cellpadding="0" cellspacing="0" width="100%">          <tr>            <td width="25%" align="center"><img border="0" src="pic2/3070.h66.gif" width="100" height="29"></td>            <td width="21%" align="center"><img border="0" src="pic2/3070.h67.gif" width="96" height="27"></td>            <td width="21%" align="center"><img border="0" src="pic2/3070.h68.gif" width="88" height="29"></td>            <td width="33%" align="center">—虚功方程,即虚位移原理</td>         </tr>         <tr>           <td width="25%" align="center"></td>           <td width="21%" align="center"><img border="0" src="pic2/3070.h69.gif" width="55" height="21"></td>           <td width="21%" align="center">             <p align="left">只包含P和Q,不含约束力,故建立P和Q的简单关系。</td>           <td width="33%" align="center">↑用动力学思想<br>             解决静力学问题</td>         </tr>       </table>     </td>   </tr>   <tr>     <td>严格建立虚位移原理,需有诸多基本概念。</td>   </tr>   <tr>     <td></td>   </tr>   <tr>     <td>       <p align="center"> <a href="3062.htm"><font color="#FF6666">[ 上一节 ]</font></a> &nbsp;  <a href="3071_1.htm"><font color="#00CC00">[ 下一节 ]</font></a>       </td>  </tr></table></BODY></HTML>                                                           

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -