📄 rfc2068.txt
字号:
Some HTTP header fields allow a time value to be specified as an integer number of seconds, represented in decimal, after the time that the message was received. delta-seconds = 1*DIGIT3.4 Character Sets HTTP uses the same definition of the term "character set" as that described for MIME: The term "character set" is used in this document to refer to a method used with one or more tables to convert a sequence of octets into a sequence of characters. Note that unconditional conversion in the other direction is not required, in that not all characters may be available in a given character set and a character set may provide more than one sequence of octets to represent a particular character. This definition is intended to allow various kinds of character encodings, from simple single-table mappings such as US- ASCII to complex table switching methods such as those that use ISO 2022's techniques. However, the definition associated with a MIME character set name MUST fully specify the mapping to be performed from octets to characters. In particular, use of external profiling information to determine the exact mapping is not permitted. Note: This use of the term "character set" is more commonly referred to as a "character encoding." However, since HTTP and MIME share the same registry, it is important that the terminology also be shared.Fielding, et. al. Standards Track [Page 22]RFC 2068 HTTP/1.1 January 1997 HTTP character sets are identified by case-insensitive tokens. The complete set of tokens is defined by the IANA Character Set registry [19]. charset = token Although HTTP allows an arbitrary token to be used as a charset value, any token that has a predefined value within the IANA Character Set registry MUST represent the character set defined by that registry. Applications SHOULD limit their use of character sets to those defined by the IANA registry.3.5 Content Codings Content coding values indicate an encoding transformation that has been or can be applied to an entity. Content codings are primarily used to allow a document to be compressed or otherwise usefully transformed without losing the identity of its underlying media type and without loss of information. Frequently, the entity is stored in coded form, transmitted directly, and only decoded by the recipient. content-coding = token All content-coding values are case-insensitive. HTTP/1.1 uses content-coding values in the Accept-Encoding (section 14.3) and Content-Encoding (section 14.12) header fields. Although the value describes the content-coding, what is more important is that it indicates what decoding mechanism will be required to remove the encoding. The Internet Assigned Numbers Authority (IANA) acts as a registry for content-coding value tokens. Initially, the registry contains the following tokens: gzip An encoding format produced by the file compression program "gzip" (GNU zip) as described in RFC 1952 [25]. This format is a Lempel- Ziv coding (LZ77) with a 32 bit CRC. compress The encoding format produced by the common UNIX file compression program "compress". This format is an adaptive Lempel-Ziv-Welch coding (LZW).Fielding, et. al. Standards Track [Page 23]RFC 2068 HTTP/1.1 January 1997 Note: Use of program names for the identification of encoding formats is not desirable and should be discouraged for future encodings. Their use here is representative of historical practice, not good design. For compatibility with previous implementations of HTTP, applications should consider "x-gzip" and "x-compress" to be equivalent to "gzip" and "compress" respectively. deflate The "zlib" format defined in RFC 1950[31] in combination with the "deflate" compression mechanism described in RFC 1951[29]. New content-coding value tokens should be registered; to allow interoperability between clients and servers, specifications of the content coding algorithms needed to implement a new value should be publicly available and adequate for independent implementation, and conform to the purpose of content coding defined in this section.3.6 Transfer Codings Transfer coding values are used to indicate an encoding transformation that has been, can be, or may need to be applied to an entity-body in order to ensure "safe transport" through the network. This differs from a content coding in that the transfer coding is a property of the message, not of the original entity. transfer-coding = "chunked" | transfer-extension transfer-extension = token All transfer-coding values are case-insensitive. HTTP/1.1 uses transfer coding values in the Transfer-Encoding header field (section 14.40). Transfer codings are analogous to the Content-Transfer-Encoding values of MIME , which were designed to enable safe transport of binary data over a 7-bit transport service. However, safe transport has a different focus for an 8bit-clean transfer protocol. In HTTP, the only unsafe characteristic of message-bodies is the difficulty in determining the exact body length (section 7.2.2), or the desire to encrypt data over a shared transport. The chunked encoding modifies the body of a message in order to transfer it as a series of chunks, each with its own size indicator, followed by an optional footer containing entity-header fields. This allows dynamically-produced content to be transferred along with the information necessary for the recipient to verify that it has received the full message.Fielding, et. al. Standards Track [Page 24]RFC 2068 HTTP/1.1 January 1997 Chunked-Body = *chunk "0" CRLF footer CRLF chunk = chunk-size [ chunk-ext ] CRLF chunk-data CRLF hex-no-zero = <HEX excluding "0"> chunk-size = hex-no-zero *HEX chunk-ext = *( ";" chunk-ext-name [ "=" chunk-ext-value ] ) chunk-ext-name = token chunk-ext-val = token | quoted-string chunk-data = chunk-size(OCTET) footer = *entity-header The chunked encoding is ended by a zero-sized chunk followed by the footer, which is terminated by an empty line. The purpose of the footer is to provide an efficient way to supply information about an entity that is generated dynamically; applications MUST NOT send header fields in the footer which are not explicitly defined as being appropriate for the footer, such as Content-MD5 or future extensions to HTTP for digital signatures or other facilities. An example process for decoding a Chunked-Body is presented in appendix 19.4.6. All HTTP/1.1 applications MUST be able to receive and decode the "chunked" transfer coding, and MUST ignore transfer coding extensions they do not understand. A server which receives an entity-body with a transfer-coding it does not understand SHOULD return 501 (Unimplemented), and close the connection. A server MUST NOT send transfer-codings to an HTTP/1.0 client.3.7 Media Types HTTP uses Internet Media Types in the Content-Type (section 14.18) and Accept (section 14.1) header fields in order to provide open and extensible data typing and type negotiation. media-type = type "/" subtype *( ";" parameter ) type = token subtype = token Parameters may follow the type/subtype in the form of attribute/value pairs.Fielding, et. al. Standards Track [Page 25]RFC 2068 HTTP/1.1 January 1997 parameter = attribute "=" value attribute = token value = token | quoted-string The type, subtype, and parameter attribute names are case- insensitive. Parameter values may or may not be case-sensitive, depending on the semantics of the parameter name. Linear white space (LWS) MUST NOT be used between the type and subtype, nor between an attribute and its value. User agents that recognize the media-type MUST process (or arrange to be processed by any external applications used to process that type/subtype by the user agent) the parameters for that MIME type as described by that type/subtype definition to the and inform the user of any problems discovered. Note: some older HTTP applications do not recognize media type parameters. When sending data to older HTTP applications, implementations should only use media type parameters when they are required by that type/subtype definition. Media-type values are registered with the Internet Assigned Number Authority (IANA). The media type registration process is outlined in RFC 2048 [17]. Use of non-registered media types is discouraged.3.7.1 Canonicalization and Text Defaults Internet media types are registered with a canonical form. In general, an entity-body transferred via HTTP messages MUST be represented in the appropriate canonical form prior to its transmission; the exception is "text" types, as defined in the next paragraph. When in canonical form, media subtypes of the "text" type use CRLF as the text line break. HTTP relaxes this requirement and allows the transport of text media with plain CR or LF alone representing a line break when it is done consistently for an entire entity-body. HTTP applications MUST accept CRLF, bare CR, and bare LF as being representative of a line break in text media received via HTTP. In addition, if the text is represented in a character set that does not use octets 13 and 10 for CR and LF respectively, as is the case for some multi-byte character sets, HTTP allows the use of whatever octet sequences are defined by that character set to represent the equivalent of CR and LF for line breaks. This flexibility regarding line breaks applies only to text media in the entity-body; a bare CR or LF MUST NOT be substituted for CRLF within any of the HTTP control structures (such as header fields and multipart boundaries). If an entity-body is encoded with a Content-Encoding, the underlying data MUST be in a form defined above prior to being encoded.Fielding, et. al. Standards Track [Page 26]RFC 2068 HTTP/1.1 January 1997 The "charset" parameter is used with some media types to define the character set (section 3.4) of the data. When no explicit charset parameter is provided by the sender, media subtypes of the "text" type are defined to have a default charset value of "ISO-8859-1" when received via HTTP. Data in character sets other than "ISO-8859-1" or its subsets MUST be labeled with an appropriate charset value. Some HTTP/1.0 software has interpreted a Content-Type header without charset parameter incorrectly to mean "recipient should guess." Senders wishing to defeat this behavior MAY include a charset parameter even when the charset is ISO-8859-1 and SHOULD do so when it is known that it will not confuse the recipient. Unfortunately, some older HTTP/1.0 clients did not deal properly with an explicit charset parameter. HTTP/1.1 recipients MUST respect the charset label provided by the sender; and those user agents that have a provision to "guess" a charset MUST use the charset from the content-type field if they support that charset, rather than the recipient's preference, when initially displaying a document.3.7.2 Multipart Types MIME provides for a number of "multipart" types -- encapsulations of one or more entities within a single message-body. All multipart types share a common syntax, as defined in MIME [7], and MUST include a boundary parameter as part of the media type value. The message body is itself a protocol element and MUST therefore use only CRLF to represent line breaks between body-parts. Unlike in MIME, the epilogue of any multipart message MUST be empty; HTTP applications MUST NOT transmit the epilogue (even if the original multipart contains
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -