📄 rfc2068.txt
字号:
Fielding, et. al. Standards Track [Page 16]RFC 2068 HTTP/1.1 January 1997 A string of text is parsed as a single word if it is quoted using double-quote marks. quoted-string = ( <"> *(qdtext) <"> ) qdtext = <any TEXT except <">> The backslash character ("\") may be used as a single-character quoting mechanism only within quoted-string and comment constructs. quoted-pair = "\" CHAR3 Protocol Parameters3.1 HTTP Version HTTP uses a "<major>.<minor>" numbering scheme to indicate versions of the protocol. The protocol versioning policy is intended to allow the sender to indicate the format of a message and its capacity for understanding further HTTP communication, rather than the features obtained via that communication. No change is made to the version number for the addition of message components which do not affect communication behavior or which only add to extensible field values. The <minor> number is incremented when the changes made to the protocol add features which do not change the general message parsing algorithm, but which may add to the message semantics and imply additional capabilities of the sender. The <major> number is incremented when the format of a message within the protocol is changed. The version of an HTTP message is indicated by an HTTP-Version field in the first line of the message. HTTP-Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT Note that the major and minor numbers MUST be treated as separate integers and that each may be incremented higher than a single digit. Thus, HTTP/2.4 is a lower version than HTTP/2.13, which in turn is lower than HTTP/12.3. Leading zeros MUST be ignored by recipients and MUST NOT be sent. Applications sending Request or Response messages, as defined by this specification, MUST include an HTTP-Version of "HTTP/1.1". Use of this version number indicates that the sending application is at least conditionally compliant with this specification. The HTTP version of an application is the highest HTTP version for which the application is at least conditionally compliant.Fielding, et. al. Standards Track [Page 17]RFC 2068 HTTP/1.1 January 1997 Proxy and gateway applications must be careful when forwarding messages in protocol versions different from that of the application. Since the protocol version indicates the protocol capability of the sender, a proxy/gateway MUST never send a message with a version indicator which is greater than its actual version; if a higher version request is received, the proxy/gateway MUST either downgrade the request version, respond with an error, or switch to tunnel behavior. Requests with a version lower than that of the proxy/gateway's version MAY be upgraded before being forwarded; the proxy/gateway's response to that request MUST be in the same major version as the request. Note: Converting between versions of HTTP may involve modification of header fields required or forbidden by the versions involved.3.2 Uniform Resource Identifiers URIs have been known by many names: WWW addresses, Universal Document Identifiers, Universal Resource Identifiers , and finally the combination of Uniform Resource Locators (URL) and Names (URN). As far as HTTP is concerned, Uniform Resource Identifiers are simply formatted strings which identify--via name, location, or any other characteristic--a resource.3.2.1 General Syntax URIs in HTTP can be represented in absolute form or relative to some known base URI, depending upon the context of their use. The two forms are differentiated by the fact that absolute URIs always begin with a scheme name followed by a colon. URI = ( absoluteURI | relativeURI ) [ "#" fragment ] absoluteURI = scheme ":" *( uchar | reserved ) relativeURI = net_path | abs_path | rel_path net_path = "//" net_loc [ abs_path ] abs_path = "/" rel_path rel_path = [ path ] [ ";" params ] [ "?" query ] path = fsegment *( "/" segment ) fsegment = 1*pchar segment = *pchar params = param *( ";" param ) param = *( pchar | "/" )Fielding, et. al. Standards Track [Page 18]RFC 2068 HTTP/1.1 January 1997 scheme = 1*( ALPHA | DIGIT | "+" | "-" | "." ) net_loc = *( pchar | ";" | "?" ) query = *( uchar | reserved ) fragment = *( uchar | reserved ) pchar = uchar | ":" | "@" | "&" | "=" | "+" uchar = unreserved | escape unreserved = ALPHA | DIGIT | safe | extra | national escape = "%" HEX HEX reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" extra = "!" | "*" | "'" | "(" | ")" | "," safe = "$" | "-" | "_" | "." unsafe = CTL | SP | <"> | "#" | "%" | "<" | ">" national = <any OCTET excluding ALPHA, DIGIT, reserved, extra, safe, and unsafe> For definitive information on URL syntax and semantics, see RFC 1738 [4] and RFC 1808 [11]. The BNF above includes national characters not allowed in valid URLs as specified by RFC 1738, since HTTP servers are not restricted in the set of unreserved characters allowed to represent the rel_path part of addresses, and HTTP proxies may receive requests for URIs not defined by RFC 1738. The HTTP protocol does not place any a priori limit on the length of a URI. Servers MUST be able to handle the URI of any resource they serve, and SHOULD be able to handle URIs of unbounded length if they provide GET-based forms that could generate such URIs. A server SHOULD return 414 (Request-URI Too Long) status if a URI is longer than the server can handle (see section 10.4.15). Note: Servers should be cautious about depending on URI lengths above 255 bytes, because some older client or proxy implementations may not properly support these lengths.3.2.2 http URL The "http" scheme is used to locate network resources via the HTTP protocol. This section defines the scheme-specific syntax and semantics for http URLs.Fielding, et. al. Standards Track [Page 19]RFC 2068 HTTP/1.1 January 1997 http_URL = "http:" "//" host [ ":" port ] [ abs_path ] host = <A legal Internet host domain name or IP address (in dotted-decimal form), as defined by Section 2.1 of RFC 1123> port = *DIGIT If the port is empty or not given, port 80 is assumed. The semantics are that the identified resource is located at the server listening for TCP connections on that port of that host, and the Request-URI for the resource is abs_path. The use of IP addresses in URL's SHOULD be avoided whenever possible (see RFC 1900 [24]). If the abs_path is not present in the URL, it MUST be given as "/" when used as a Request-URI for a resource (section 5.1.2).3.2.3 URI Comparison When comparing two URIs to decide if they match or not, a client SHOULD use a case-sensitive octet-by-octet comparison of the entire URIs, with these exceptions: o A port that is empty or not given is equivalent to the default port for that URI; o Comparisons of host names MUST be case-insensitive; o Comparisons of scheme names MUST be case-insensitive; o An empty abs_path is equivalent to an abs_path of "/". Characters other than those in the "reserved" and "unsafe" sets (see section 3.2) are equivalent to their ""%" HEX HEX" encodings. For example, the following three URIs are equivalent: http://abc.com:80/~smith/home.html http://ABC.com/%7Esmith/home.html http://ABC.com:/%7esmith/home.htmlFielding, et. al. Standards Track [Page 20]RFC 2068 HTTP/1.1 January 19973.3 Date/Time Formats3.3.1 Full Date HTTP applications have historically allowed three different formats for the representation of date/time stamps: Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123 Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036 Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format The first format is preferred as an Internet standard and represents a fixed-length subset of that defined by RFC 1123 (an update to RFC 822). The second format is in common use, but is based on the obsolete RFC 850 [12] date format and lacks a four-digit year. HTTP/1.1 clients and servers that parse the date value MUST accept all three formats (for compatibility with HTTP/1.0), though they MUST only generate the RFC 1123 format for representing HTTP-date values in header fields. Note: Recipients of date values are encouraged to be robust in accepting date values that may have been sent by non-HTTP applications, as is sometimes the case when retrieving or posting messages via proxies/gateways to SMTP or NNTP. All HTTP date/time stamps MUST be represented in Greenwich Mean Time (GMT), without exception. This is indicated in the first two formats by the inclusion of "GMT" as the three-letter abbreviation for time zone, and MUST be assumed when reading the asctime format. HTTP-date = rfc1123-date | rfc850-date | asctime-date rfc1123-date = wkday "," SP date1 SP time SP "GMT" rfc850-date = weekday "," SP date2 SP time SP "GMT" asctime-date = wkday SP date3 SP time SP 4DIGIT date1 = 2DIGIT SP month SP 4DIGIT ; day month year (e.g., 02 Jun 1982) date2 = 2DIGIT "-" month "-" 2DIGIT ; day-month-year (e.g., 02-Jun-82) date3 = month SP ( 2DIGIT | ( SP 1DIGIT )) ; month day (e.g., Jun 2) time = 2DIGIT ":" 2DIGIT ":" 2DIGIT ; 00:00:00 - 23:59:59 wkday = "Mon" | "Tue" | "Wed" | "Thu" | "Fri" | "Sat" | "Sun"Fielding, et. al. Standards Track [Page 21]RFC 2068 HTTP/1.1 January 1997 weekday = "Monday" | "Tuesday" | "Wednesday" | "Thursday" | "Friday" | "Saturday" | "Sunday" month = "Jan" | "Feb" | "Mar" | "Apr" | "May" | "Jun" | "Jul" | "Aug" | "Sep" | "Oct" | "Nov" | "Dec" Note: HTTP requirements for the date/time stamp format apply only to their usage within the protocol stream. Clients and servers are not required to use these formats for user presentation, request logging, etc.3.3.2 Delta Seconds
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -