📄 sem.c
字号:
#define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SRLSI (* FLD (i_dr), ANDSI (* FLD (i_sr), 31)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc;#undef FLD}/* srl3: srl3 $dr,$sr,$simm16 */static SEM_PCSEM_FN_NAME (m32rbf,srl3) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_add3.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRLSI (* FLD (i_sr), ANDSI (FLD (f_simm16), 31)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc;#undef FLD}/* srli: srli $dr,$uimm5 */static SEM_PCSEM_FN_NAME (m32rbf,srli) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_slli.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SRLSI (* FLD (i_dr), FLD (f_uimm5)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc;#undef FLD}/* st: st $src1,@$src2 */static SEM_PCSEM_FN_NAME (m32rbf,st) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = * FLD (i_src1); SETMEMSI (current_cpu, pc, * FLD (i_src2), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc;#undef FLD}/* st-d: st $src1,@($slo16,$src2) */static SEM_PCSEM_FN_NAME (m32rbf,st_d) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_st_d.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = * FLD (i_src1); SETMEMSI (current_cpu, pc, ADDSI (* FLD (i_src2), FLD (f_simm16)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc;#undef FLD}/* stb: stb $src1,@$src2 */static SEM_PCSEM_FN_NAME (m32rbf,stb) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { QI opval = * FLD (i_src1); SETMEMQI (current_cpu, pc, * FLD (i_src2), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc;#undef FLD}/* stb-d: stb $src1,@($slo16,$src2) */static SEM_PCSEM_FN_NAME (m32rbf,stb_d) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_st_d.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI opval = * FLD (i_src1); SETMEMQI (current_cpu, pc, ADDSI (* FLD (i_src2), FLD (f_simm16)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc;#undef FLD}/* sth: sth $src1,@$src2 */static SEM_PCSEM_FN_NAME (m32rbf,sth) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { HI opval = * FLD (i_src1); SETMEMHI (current_cpu, pc, * FLD (i_src2), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc;#undef FLD}/* sth-d: sth $src1,@($slo16,$src2) */static SEM_PCSEM_FN_NAME (m32rbf,sth_d) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_st_d.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI opval = * FLD (i_src1); SETMEMHI (current_cpu, pc, ADDSI (* FLD (i_src2), FLD (f_simm16)), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc;#undef FLD}/* st-plus: st $src1,@+$src2 */static SEM_PCSEM_FN_NAME (m32rbf,st_plus) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2);{ SI tmp_new_src2; tmp_new_src2 = ADDSI (* FLD (i_src2), 4); { SI opval = * FLD (i_src1); SETMEMSI (current_cpu, pc, tmp_new_src2, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = tmp_new_src2; * FLD (i_src2) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); }} return vpc;#undef FLD}/* st-minus: st $src1,@-$src2 */static SEM_PCSEM_FN_NAME (m32rbf,st_minus) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2);{ SI tmp_new_src2; tmp_new_src2 = SUBSI (* FLD (i_src2), 4); { SI opval = * FLD (i_src1); SETMEMSI (current_cpu, pc, tmp_new_src2, opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } { SI opval = tmp_new_src2; * FLD (i_src2) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); }} return vpc;#undef FLD}/* sub: sub $dr,$sr */static SEM_PCSEM_FN_NAME (m32rbf,sub) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2); { SI opval = SUBSI (* FLD (i_dr), * FLD (i_sr)); * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc;#undef FLD}/* subv: subv $dr,$sr */static SEM_PCSEM_FN_NAME (m32rbf,subv) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2);{ SI temp0;BI temp1; temp0 = SUBSI (* FLD (i_dr), * FLD (i_sr)); temp1 = SUBOFSI (* FLD (i_dr), * FLD (i_sr), 0); { SI opval = temp0; * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { BI opval = temp1; CPU (h_cond) = opval; TRACE_RESULT (current_cpu, abuf, "cond", 'x', opval); }} return vpc;#undef FLD}/* subx: subx $dr,$sr */static SEM_PCSEM_FN_NAME (m32rbf,subx) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_add.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2);{ SI temp0;BI temp1; temp0 = SUBCSI (* FLD (i_dr), * FLD (i_sr), CPU (h_cond)); temp1 = SUBCFSI (* FLD (i_dr), * FLD (i_sr), CPU (h_cond)); { SI opval = temp0; * FLD (i_dr) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { BI opval = temp1; CPU (h_cond) = opval; TRACE_RESULT (current_cpu, abuf, "cond", 'x', opval); }} return vpc;#undef FLD}/* trap: trap $uimm4 */static SEM_PCSEM_FN_NAME (m32rbf,trap) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_trap.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2);{ { USI opval = GET_H_CR (((UINT) 6)); SET_H_CR (((UINT) 14), opval); TRACE_RESULT (current_cpu, abuf, "cr", 'x', opval); } { USI opval = ADDSI (pc, 4); SET_H_CR (((UINT) 6), opval); TRACE_RESULT (current_cpu, abuf, "cr", 'x', opval); } { UQI opval = CPU (h_bpsw); CPU (h_bbpsw) = opval; TRACE_RESULT (current_cpu, abuf, "bbpsw", 'x', opval); } { UQI opval = GET_H_PSW (); CPU (h_bpsw) = opval; TRACE_RESULT (current_cpu, abuf, "bpsw", 'x', opval); } { UQI opval = ANDQI (GET_H_PSW (), 128); SET_H_PSW (opval); TRACE_RESULT (current_cpu, abuf, "psw", 'x', opval); } { SI opval = m32r_trap (current_cpu, pc, FLD (f_uimm4)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); }} SEM_BRANCH_FINI (vpc); return vpc;#undef FLD}/* unlock: unlock $src1,@$src2 */static SEM_PCSEM_FN_NAME (m32rbf,unlock) (SIM_CPU *current_cpu, SEM_ARG sem_arg){#define FLD(f) abuf->fields.sfmt_st_plus.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 2);{if (CPU (h_lock)) { { SI opval = * FLD (i_src1); SETMEMSI (current_cpu, pc, * FLD (i_src2), opval); written |= (1 << 4); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); }} { BI opval = 0; CPU (h_lock) = opval; TRACE_RESULT (current_cpu, abuf, "lock", 'x', opval); }} abuf->written = written; return vpc;#undef FLD}/* Table of all semantic fns. */static const struct sem_fn_desc sem_fns[] = { { M32RBF_INSN_X_INVALID, SEM_FN_NAME (m32rbf,x_invalid) }, { M32RBF_INSN_X_AFTER, SEM_FN_NAME (m32rbf,x_after) }, { M32RBF_INSN_X_BEFORE, SEM_FN_NAME (m32rbf,x_before) }, { M32RBF_INSN_X_CTI_CHAIN, SEM_FN_NAME (m32rbf,x_cti_chain) }, { M32RBF_INSN_X_CHAIN, SEM_FN_NAME (m32rbf,x_chain) }, { M32RBF_INSN_X_BEGIN, SEM_FN_NAME (m32rbf,x_begin) }, { M32RBF_INSN_ADD, SEM_FN_NAME (m32rbf,add) }, { M32RBF_INSN_ADD3, SEM_FN_NAME (m32rbf,add3) }, { M32RBF_INSN_AND, SEM_FN_NAME (m32rbf,and) }, { M32RBF_INSN_AND3, SEM_FN_NAME (m32rbf,and3) }, { M32RBF_INSN_OR, SEM_FN_NAME (m32rbf,or) }, { M32RBF_INSN_OR3, SEM_FN_NAME (m32rbf,or3) }, { M32RBF_INSN_XOR, SEM_FN_NAME (m32rbf,xor) }, { M32RBF_INSN_XOR3, SEM_FN_NAME (m32rbf,xor3) }, { M32RBF_INSN_ADDI, SEM_FN_NAME (m32rbf,addi) }, { M32RBF_INSN_ADDV, SEM_FN_NAME (m32rbf,addv) }, { M32RBF_INSN_ADDV3, SEM_FN_NAME (m32rbf,addv3) }, { M32RBF_INSN_ADDX, SEM_FN_NAME (m32rbf,addx) }, { M32RBF_INSN_BC8, SEM_FN_NAME (m32rbf,bc8) }, { M32RBF_INSN_BC24, SEM_FN_NAME (m32rbf,bc24) }, { M32RBF_INSN_BEQ, SEM_FN_NAME (m32rbf,beq) }, { M32RBF_INSN_BEQZ, SEM_FN_NAME (m32rbf,beqz) }, { M32RBF_INSN_BGEZ, SEM_FN_NAME (m32rbf,bgez) }, { M32RBF_INSN_BGTZ, SEM_FN_NAME (m32rbf,bgtz) }, { M32RBF_INSN_BLEZ, SEM_FN_NAME (m32rbf,blez) }, { M32RBF_INSN_BLTZ, SEM_FN_NAME (m32rbf,bltz) }, { M32RBF_INSN_BNEZ, SEM_FN_NAME (m32rbf,bnez) }, { M32RBF_INSN_BL8, SEM_FN_NAME (m32rbf,bl8) }, { M32RBF_INSN_BL24, SEM_FN_NAME (m32rbf,bl24) }, { M32RBF_INSN_BNC8, SEM_FN_NAME (m32rbf,bnc8) }, { M32RBF_INSN_BNC24, SEM_FN_NAME (m32rbf,bnc24) }, { M32RBF_INSN_BNE, SEM_FN_NAME (m32rbf,bne) }, { M32RBF_INSN_BRA8, SEM_FN_NAME (m32rbf,bra8) }, { M32RBF_INSN_BRA24, SEM_FN_NAME (m32rbf,bra24) }, { M32RBF_INSN_CMP, SEM_FN_NAME (m32rbf,cmp) }, { M32RBF_INSN_CMPI, SEM_FN_NAME (m32rbf,cmpi) }, { M32RBF_INSN_CMPU, SEM_FN_NAME (m32rbf,cmpu) }, { M32RBF_INSN_CMPUI, SEM_FN_NAME (m32rbf,cmpui) }, { M32RBF_INSN_DIV, SEM_FN_NAME (m32rbf,div) }, { M32RBF_INSN_DIVU, SEM_FN_NAME (m32rbf,divu) }, { M32RBF_INSN_REM, SEM_FN_NAME (m32rbf,rem) }, { M32RBF_INSN_REMU, SEM_FN_NAME (m32rbf,remu) }, { M32RBF_INSN_JL, SEM_FN_NAME (m32rbf,jl) }, { M32RBF_INSN_JMP, SEM_FN_NAME (m32rbf,jmp) }, { M32RBF_INSN_LD, SEM_FN_NAME (m32rbf,ld) }, { M32RBF_INSN_LD_D, SEM_FN_NAME (m32rbf,ld_d) }, { M32RBF_INSN_LDB, SEM_FN_NAME (m32rbf,ldb) }, { M32RBF_INSN_LDB_D, SEM_FN_NAME (m32rbf,ldb_d) }, { M32RBF_INSN_LDH, SEM_FN_NAME (m32rbf,ldh) }, { M32RBF_INSN_LDH_D, SEM_FN_NAME (m32rbf,ldh_d) }, { M32RBF_INSN_LDUB, SEM_FN_NAME (m32rbf,ldub) }, { M32RBF_INSN_LDUB_D, SEM_FN_NAME (m32rbf,ldub_d) }, { M32RBF_INSN_LDUH, SEM_FN_NAME (m32rbf,lduh) }, { M32RBF_INSN_LDUH_D, SEM_FN_NAME (m32rbf,lduh_d) }, { M32RBF_INSN_LD_PLUS, SEM_FN_NAME (m32rbf,ld_plus) }, { M32RBF_INSN_LD24, SEM_FN_NAME (m32rbf,ld24) }, { M32RBF_INSN_LDI8, SEM_FN_NAME (m32rbf,ldi8) }, { M32RBF_INSN_LDI16, SEM_FN_NAME (m32rbf,ldi16) }, { M32RBF_INSN_LOCK, SEM_FN_NAME (m32rbf,lock) }, { M32RBF_INSN_MACHI, SEM_FN_NAME (m32rbf,machi) }, { M32RBF_INSN_MACLO, SEM_FN_NAME (m32rbf,maclo) }, { M32RBF_INSN_MACWHI, SEM_FN_NAME (m32rbf,macwhi) }, { M32RBF_INSN_MACWLO, SEM_FN_NAME (m32rbf,macwlo) }, { M32RBF_INSN_MUL, SEM_FN_NAME (m32rbf,mul) }, { M32RBF_INSN_MULHI, SEM_FN_NAME (m32rbf,mulhi) }, { M32RBF_INSN_MULLO, SEM_FN_NAME (m32rbf,mullo) }, { M32RBF_INSN_MULWHI, SEM_FN_NAME (m32rbf,mulwhi) }, { M32RBF_INSN_MULWLO, SEM_FN_NAME (m32rbf,mulwlo) }, { M32RBF_INSN_MV, SEM_FN_NAME (m32rbf,mv) }, { M32RBF_INSN_MVFACHI, SEM_FN_NAME (m32rbf,mvfachi) }, { M32RBF_INSN_MVFACLO, SEM_FN_NAME (m32rbf,mvfaclo) }, { M32RBF_INSN_MVFACMI, SEM_FN_NAME (m32rbf,mvfacmi) }, { M32RBF_INSN_MVFC, SEM_FN_NAME (m32rbf,mvfc) }, { M32RBF_INSN_MVTACHI, SEM_FN_NAME (m32rbf,mvtachi) }, { M32RBF_INSN_MVTACLO, SEM_FN_NAME (m32rbf,mvtaclo) }, { M32RBF_INSN_MVTC, SEM_FN_NAME (m32rbf,mvtc) }, { M32RBF_INSN_NEG, SEM_FN_NAME (m32rbf,neg) }, { M32RBF_INSN_NOP, SEM_FN_NAME (m32rbf,nop) }, { M32RBF_INSN_NOT, SEM_FN_NAME (m32rbf,not) }, { M32RBF_INSN_RAC, SEM_FN_NAME (m32rbf,rac) }, { M32RBF_INSN_RACH, SEM_FN_NAME (m32rbf,rach) }, { M32RBF_INSN_RTE, SEM_FN_NAME (m32rbf,rte) }, { M32RBF_INSN_SETH, SEM_FN_NAME (m32rbf,seth) }, { M32RBF_INSN_SLL, SEM_FN_NAME (m32rbf,sll) }, { M32RBF_INSN_SLL3, SEM_FN_NAME (m32rbf,sll3) }, { M32RBF_INSN_SLLI, SEM_FN_NAME (m32rbf,slli) }, { M32RBF_INSN_SRA, SEM_FN_NAME (m32rbf,sra) }, { M32RBF_INSN_SRA3, SEM_FN_NAME (m32rbf,sra3) }, { M32RBF_INSN_SRAI, SEM_FN_NAME (m32rbf,srai) }, { M32RBF_INSN_SRL, SEM_FN_NAME (m32rbf,srl) }, { M32RBF_INSN_SRL3, SEM_FN_NAME (m32rbf,srl3) }, { M32RBF_INSN_SRLI, SEM_FN_NAME (m32rbf,srli) }, { M32RBF_INSN_ST, SEM_FN_NAME (m32rbf,st) }, { M32RBF_INSN_ST_D, SEM_FN_NAME (m32rbf,st_d) }, { M32RBF_INSN_STB, SEM_FN_NAME (m32rbf,stb) }, { M32RBF_INSN_STB_D, SEM_FN_NAME (m32rbf,stb_d) }, { M32RBF_INSN_STH, SEM_FN_NAME (m32rbf,sth) }, { M32RBF_INSN_STH_D, SEM_FN_NAME (m32rbf,sth_d) }, { M32RBF_INSN_ST_PLUS, SEM_FN_NAME (m32rbf,st_plus) }, { M32RBF_INSN_ST_MINUS, SEM_FN_NAME (m32rbf,st_minus) }, { M32RBF_INSN_SUB, SEM_FN_NAME (m32rbf,sub) }, { M32RBF_INSN_SUBV, SEM_FN_NAME (m32rbf,subv) }, { M32RBF_INSN_SUBX, SEM_FN_NAME (m32rbf,subx) }, { M32RBF_INSN_TRAP, SEM_FN_NAME (m32rbf,trap) }, { M32RBF_INSN_UNLOCK, SEM_FN_NAME (m32rbf,unlock) }, { 0, 0 }};/* Add the semantic fns to IDESC_TABLE. */voidSEM_FN_NAME (m32rbf,init_idesc_table) (SIM_CPU *current_cpu){ IDESC *idesc_table = CPU_IDESC (current_cpu); const struct sem_fn_desc *sf; int mach_num = MACH_NUM (CPU_MACH (current_cpu)); for (sf = &sem_fns[0]; sf->fn != 0; ++sf) { const CGEN_INSN *insn = idesc_table[sf->index].idata; int valid_p = (CGEN_INSN_VIRTUAL_P (insn) || CGEN_INSN_MACH_HAS_P (insn, mach_num));#if FAST_P if (valid_p) idesc_table[sf->index].sem_fast = sf->fn;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -