⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ch5_3_1.htm

📁 matlab详细手册,提供各种相关的操作
💻 HTM
字号:
<! Made by Html Translation Ver 1.0>

<HTML>

<HEAD>

<TITLE>  反矩阵、矩阵秩与行列式 </TITLE>

</HEAD>



<BODY BACKGROUND="bg0000.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/bg0000.gif">

<FONT COLOR="#0000FF">

<H1>5.3.1  反矩阵、矩阵秩与行列式</H1>

</FONT>

<HR>



<P>

一个正方矩阵<FONT FACE="Times New Roman">A</FONT>的反矩阵的定义是<IMG SRC="img00001-2.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00001.gif">,所以此二矩阵相乘不论是<IMG SRC="img00002-2.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00002.gif">或<IMG SRC="img00003-2.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img5/img00003.gif">,结果皆为单位矩阵。但是一

矩阵如果是奇异<FONT FACE="Times New Roman">(singular) </FONT>或是条件不足<FONT FACE="Times New Roman"> (ill-conditioned)</FONT>,其反矩阵并不存在。条件不足的矩阵与一组联立方程

组其中的方程式并不独立有关,而一矩阵的秩<FONT FACE="Times New Roman">(rank) </FONT>即是代表矩阵中独立方程式个数。如果一矩阵的秩数和

其矩阵的列数相等,则此矩阵为非奇异且其反矩阵存在。

<BR>

<P>

MATLAB的反矩阵函数和秩函数语法分别为<FONT COLOR=#FF0000 FACE="Times New Roman">inv(A)</FONT><TT><FONT FACE="Courier New">,

</FONT></TT><FONT COLOR=#FF0000 FACE="Times New Roman">rank(A)</FONT>,:例如:

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; A=[2 1; 4

3];</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; rank(A)</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">    2       % </FONT><FONT COLOR=#FF0000>表示</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">A</FONT><FONT COLOR=#FF0000>秩数为</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">2</FONT><FONT COLOR=#FF0000>且等于矩阵的列数</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; inv(A)   

   % </FONT><FONT COLOR=#FF0000>反矩阵</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">ans =</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">    1.5000   -0.5000</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">   -2.0000    1.0000</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt;  B=[2 1; 3

2; 4 5];   % B</FONT><FONT COLOR=#FF0000>为奇异矩阵</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; rank(B)</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">ans =</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">     2      % </FONT><FONT COLOR=#FF0000>表示</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">B</FONT><FONT COLOR=#FF0000>秩数为</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">2</FONT><FONT COLOR=#FF0000>,但是其列数为</FONT><FONT COLOR=#FF0000 FACE="Times New Roman">3</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; inv(B)</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">??? Error using ==&gt;

inv</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">Matrix must be square.

<BR>

</FONT>

<P>

相信大家都会计算矩阵行列式的值,但是如一矩阵大小超过<FONT FACE="Times New Roman">4</FONT>以上,行列式值的计算就会繁复。<FONT FACE="Times New Roman">MATLAB</FONT>提供

计算行列式的函数,其语法为<FONT COLOR=#FF0000 FACE="Times New Roman">det(A)</FONT>,例如:

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; A=[1 3 0;

-1 5 2; 1 2 1];</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; det(A)   

  % </FONT><FONT COLOR=#FF0000>矩阵之行列式值</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">ans =</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">     10<BR>

</FONT>沪p算就会繁复。<FONT FACE="Times New Roman">MATLAB</FONT>提供

计算行列式的函数,其语法为<FONT COLOR=#FF0000 FACE="Times New Roman">det(A)</FONT>,例如:

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; A=[1 3 0;

-1 5 2; 1 2 1];</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">&gt;&gt; det(A)   

  % </FONT><FONT COLOR=#FF0000>矩阵之行列式值</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">ans =</FONT>

<P>

<FONT COLOR=#FF0000 FACE="Times New Roman">     10<BR>

</FONT><HR>

<A HREF="ch5_3.htm" tppabs="http://166.111.167.223/computer/cai/matlabjc/ch5_3.htm"><IMG SRC="lastpage.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/lastpage.gif" BORDER=0></A>

<A HREF="ch5_3_2.htm" tppabs="http://166.111.167.223/computer/cai/matlabjc/ch5_3_2.htm"><IMG SRC="nextpage-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/nextpage.gif" BORDER=0 HSPACE=10></A>

<A HREF="index.html" tppabs="http://166.111.167.223/computer/cai/matlabjc/index.html"><IMG SRC="outline-1.gif" tppabs="http://166.111.167.223/computer/cai/matlabjc/img/outline.gif" BORDER=0 HSPACE=6></A><BR>

<FONT SIZE=2 COLOR=#AA55FF> 上一页 下一页 讲义大纲 </FONT>

</BODY>

</HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -