⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 idct.c

📁 H.263的压缩算法
💻 C
字号:
/************************************************************************ * *  idct.c, inverse fast DCT for tmndecode (H.263 decoder) *  Copyright (C) 1995, 1996  Telenor R&D, Norway * *  Contacts: *  Robert Danielsen                  <Robert.Danielsen@nta.no> * *  Telenor Research and Development  http://www.nta.no/brukere/DVC/ *  P.O.Box 83                        tel.:   +47 63 84 84 00 *  N-2007 Kjeller, Norway            fax.:   +47 63 81 00 76 * *  Copyright (C) 1997  University of BC, Canada *  Modified by: Michael Gallant <mikeg@ee.ubc.ca> *               Guy Cote <guyc@ee.ubc.ca> *               Berna Erol <bernae@ee.ubc.ca> * *  Contacts: *  Michael Gallant                   <mikeg@ee.ubc.ca> * *  UBC Image Processing Laboratory   http://www.ee.ubc.ca/image *  2356 Main Mall                    tel.: +1 604 822 4051 *  Vancouver BC Canada V6T1Z4        fax.: +1 604 822 5949 * ************************************************************************//* Disclaimer of Warranty *  * These software programs are available to the user without any license fee * or royalty on an "as is" basis. The University of British Columbia * disclaims any and all warranties, whether express, implied, or * statuary, including any implied warranties or merchantability or of * fitness for a particular purpose.  In no event shall the * copyright-holder be liable for any incidental, punitive, or * consequential damages of any kind whatsoever arising from the use of * these programs. *  * This disclaimer of warranty extends to the user of these programs and * user's customers, employees, agents, transferees, successors, and * assigns. *  * The University of British Columbia does not represent or warrant that the * programs furnished hereunder are free of infringement of any * third-party patents. *  * Commercial implementations of H.263, including shareware, are subject to * royalty fees to patent holders.  Many of these patents are general * enough such that they are unavoidable regardless of implementation * design. *  *//* based on mpeg2decode, (C) 1994, MPEG Software Simulation Group and * mpeg2play, (C) 1994 Stefan Eckart <stefan@lis.e-technik.tu-muenchen.de> *  *//**********************************************************//* inverse two dimensional DCT, Chen-Wang algorithm       *//* (cf. IEEE ASSP-32, pp. 803-816, Aug. 1984)             *//* 32-bit integer arithmetic (8 bit coefficients)         *//* 11 mults, 29 adds per DCT                              *//* sE, 18.8.91       *//**********************************************************//* coefficients extended to 12 bit for IEEE1180-1990      *//* compliance                           sE,  2.1.94       *//**********************************************************//* this code assumes >> to be a two's-complement arithmetic *//* right shift: (-2)>>1 == -1 , (-3)>>1 == -2               */#include "config.h"#define W1 2841                 /* 2048*sqrt(2)*cos(1*pi/16) */#define W2 2676                 /* 2048*sqrt(2)*cos(2*pi/16) */#define W3 2408                 /* 2048*sqrt(2)*cos(3*pi/16) */#define W5 1609                 /* 2048*sqrt(2)*cos(5*pi/16) */#define W6 1108                 /* 2048*sqrt(2)*cos(6*pi/16) */#define W7 565                  /* 2048*sqrt(2)*cos(7*pi/16) *//* global declarations */void init_idct _ANSI_ARGS_ ((void));void idct _ANSI_ARGS_ ((short *block));/* private data */static short iclip[1024];       /* clipping table */static short *iclp;/* private prototypes */static void idctrow _ANSI_ARGS_ ((short *blk));static void idctcol _ANSI_ARGS_ ((short *blk));/* row (horizontal) IDCT *  * 7                       pi         1 dst[k] = sum c[l] * src[l] * cos( -- * * ( k + - ) * l ) l=0                      8          2 *  * where: c[0]    = 128 c[1..7] = 128*sqrt(2) */static void idctrow (short *blk){  int x0, x1, x2, x3, x4, x5, x6, x7, x8;  /* shortcut */  if (!((x1 = blk[4] << 11) | (x2 = blk[6]) | (x3 = blk[2]) |        (x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blk[3])))  {    blk[0] = blk[1] = blk[2] = blk[3] = blk[4] = blk[5] = blk[6] = blk[7] = blk[0] << 3;    return;  }  x0 = (blk[0] << 11) + 128;    /* for proper rounding in the fourth stage */  /* first stage */  x8 = W7 * (x4 + x5);  x4 = x8 + (W1 - W7) * x4;  x5 = x8 - (W1 + W7) * x5;  x8 = W3 * (x6 + x7);  x6 = x8 - (W3 - W5) * x6;  x7 = x8 - (W3 + W5) * x7;  /* second stage */  x8 = x0 + x1;  x0 -= x1;  x1 = W6 * (x3 + x2);  x2 = x1 - (W2 + W6) * x2;  x3 = x1 + (W2 - W6) * x3;  x1 = x4 + x6;  x4 -= x6;  x6 = x5 + x7;  x5 -= x7;  /* third stage */  x7 = x8 + x3;  x8 -= x3;  x3 = x0 + x2;  x0 -= x2;  x2 = (181 * (x4 + x5) + 128) >> 8;  x4 = (181 * (x4 - x5) + 128) >> 8;  /* fourth stage */  blk[0] = (x7 + x1) >> 8;  blk[1] = (x3 + x2) >> 8;  blk[2] = (x0 + x4) >> 8;  blk[3] = (x8 + x6) >> 8;  blk[4] = (x8 - x6) >> 8;  blk[5] = (x0 - x4) >> 8;  blk[6] = (x3 - x2) >> 8;  blk[7] = (x7 - x1) >> 8;}/* column (vertical) IDCT *  * 7                         pi         1 dst[8*k] = sum c[l] * src[8*l] * * cos( -- * ( k + - ) * l ) l=0                        8          2 *  * where: c[0]    = 1/1024 c[1..7] = (1/1024)*sqrt(2) */static void idctcol (short *blk){  int x0, x1, x2, x3, x4, x5, x6, x7, x8;  /* shortcut */  if (!((x1 = (blk[8 * 4] << 8)) | (x2 = blk[8 * 6]) | (x3 = blk[8 * 2]) |        (x4 = blk[8 * 1]) | (x5 = blk[8 * 7]) | (x6 = blk[8 * 5]) | (x7 = blk[8 * 3])))  {    blk[8 * 0] = blk[8 * 1] = blk[8 * 2] = blk[8 * 3] = blk[8 * 4] = blk[8 * 5] = blk[8 * 6] = blk[8 * 7] =      iclp[(blk[8 * 0] + 32) >> 6];    return;  }  x0 = (blk[8 * 0] << 8) + 8192;  /* first stage */  x8 = W7 * (x4 + x5) + 4;  x4 = (x8 + (W1 - W7) * x4) >> 3;  x5 = (x8 - (W1 + W7) * x5) >> 3;  x8 = W3 * (x6 + x7) + 4;  x6 = (x8 - (W3 - W5) * x6) >> 3;  x7 = (x8 - (W3 + W5) * x7) >> 3;  /* second stage */  x8 = x0 + x1;  x0 -= x1;  x1 = W6 * (x3 + x2) + 4;  x2 = (x1 - (W2 + W6) * x2) >> 3;  x3 = (x1 + (W2 - W6) * x3) >> 3;  x1 = x4 + x6;  x4 -= x6;  x6 = x5 + x7;  x5 -= x7;  /* third stage */  x7 = x8 + x3;  x8 -= x3;  x3 = x0 + x2;  x0 -= x2;  x2 = (181 * (x4 + x5) + 128) >> 8;  x4 = (181 * (x4 - x5) + 128) >> 8;  /* fourth stage */  blk[8 * 0] = iclp[(x7 + x1) >> 14];  blk[8 * 1] = iclp[(x3 + x2) >> 14];  blk[8 * 2] = iclp[(x0 + x4) >> 14];  blk[8 * 3] = iclp[(x8 + x6) >> 14];  blk[8 * 4] = iclp[(x8 - x6) >> 14];  blk[8 * 5] = iclp[(x0 - x4) >> 14];  blk[8 * 6] = iclp[(x3 - x2) >> 14];  blk[8 * 7] = iclp[(x7 - x1) >> 14];}/* two dimensional inverse discrete cosine transform */void idct (short *block){  int i;  for (i = 0; i < 8; i++)    idctrow (block + 8 * i);  for (i = 0; i < 8; i++)    idctcol (block + i);}void init_idct (){  int i;  iclp = iclip + 512;  for (i = -512; i < 512; i++)    iclp[i] = (i < -256) ? -256 : ((i > 255) ? 255 : i);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -