📄 idct.c
字号:
/************************************************************************ * * idct.c, inverse fast DCT for tmndecode (H.263 decoder) * Copyright (C) 1995, 1996 Telenor R&D, Norway * * Contacts: * Robert Danielsen <Robert.Danielsen@nta.no> * * Telenor Research and Development http://www.nta.no/brukere/DVC/ * P.O.Box 83 tel.: +47 63 84 84 00 * N-2007 Kjeller, Norway fax.: +47 63 81 00 76 * * Copyright (C) 1997 University of BC, Canada * Modified by: Michael Gallant <mikeg@ee.ubc.ca> * Guy Cote <guyc@ee.ubc.ca> * Berna Erol <bernae@ee.ubc.ca> * * Contacts: * Michael Gallant <mikeg@ee.ubc.ca> * * UBC Image Processing Laboratory http://www.ee.ubc.ca/image * 2356 Main Mall tel.: +1 604 822 4051 * Vancouver BC Canada V6T1Z4 fax.: +1 604 822 5949 * ************************************************************************//* Disclaimer of Warranty * * These software programs are available to the user without any license fee * or royalty on an "as is" basis. The University of British Columbia * disclaims any and all warranties, whether express, implied, or * statuary, including any implied warranties or merchantability or of * fitness for a particular purpose. In no event shall the * copyright-holder be liable for any incidental, punitive, or * consequential damages of any kind whatsoever arising from the use of * these programs. * * This disclaimer of warranty extends to the user of these programs and * user's customers, employees, agents, transferees, successors, and * assigns. * * The University of British Columbia does not represent or warrant that the * programs furnished hereunder are free of infringement of any * third-party patents. * * Commercial implementations of H.263, including shareware, are subject to * royalty fees to patent holders. Many of these patents are general * enough such that they are unavoidable regardless of implementation * design. * *//* based on mpeg2decode, (C) 1994, MPEG Software Simulation Group and * mpeg2play, (C) 1994 Stefan Eckart <stefan@lis.e-technik.tu-muenchen.de> * *//**********************************************************//* inverse two dimensional DCT, Chen-Wang algorithm *//* (cf. IEEE ASSP-32, pp. 803-816, Aug. 1984) *//* 32-bit integer arithmetic (8 bit coefficients) *//* 11 mults, 29 adds per DCT *//* sE, 18.8.91 *//**********************************************************//* coefficients extended to 12 bit for IEEE1180-1990 *//* compliance sE, 2.1.94 *//**********************************************************//* this code assumes >> to be a two's-complement arithmetic *//* right shift: (-2)>>1 == -1 , (-3)>>1 == -2 */#include "config.h"#define W1 2841 /* 2048*sqrt(2)*cos(1*pi/16) */#define W2 2676 /* 2048*sqrt(2)*cos(2*pi/16) */#define W3 2408 /* 2048*sqrt(2)*cos(3*pi/16) */#define W5 1609 /* 2048*sqrt(2)*cos(5*pi/16) */#define W6 1108 /* 2048*sqrt(2)*cos(6*pi/16) */#define W7 565 /* 2048*sqrt(2)*cos(7*pi/16) *//* global declarations */void init_idct _ANSI_ARGS_ ((void));void idct _ANSI_ARGS_ ((short *block));/* private data */static short iclip[1024]; /* clipping table */static short *iclp;/* private prototypes */static void idctrow _ANSI_ARGS_ ((short *blk));static void idctcol _ANSI_ARGS_ ((short *blk));/* row (horizontal) IDCT * * 7 pi 1 dst[k] = sum c[l] * src[l] * cos( -- * * ( k + - ) * l ) l=0 8 2 * * where: c[0] = 128 c[1..7] = 128*sqrt(2) */static void idctrow (short *blk){ int x0, x1, x2, x3, x4, x5, x6, x7, x8; /* shortcut */ if (!((x1 = blk[4] << 11) | (x2 = blk[6]) | (x3 = blk[2]) | (x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blk[3]))) { blk[0] = blk[1] = blk[2] = blk[3] = blk[4] = blk[5] = blk[6] = blk[7] = blk[0] << 3; return; } x0 = (blk[0] << 11) + 128; /* for proper rounding in the fourth stage */ /* first stage */ x8 = W7 * (x4 + x5); x4 = x8 + (W1 - W7) * x4; x5 = x8 - (W1 + W7) * x5; x8 = W3 * (x6 + x7); x6 = x8 - (W3 - W5) * x6; x7 = x8 - (W3 + W5) * x7; /* second stage */ x8 = x0 + x1; x0 -= x1; x1 = W6 * (x3 + x2); x2 = x1 - (W2 + W6) * x2; x3 = x1 + (W2 - W6) * x3; x1 = x4 + x6; x4 -= x6; x6 = x5 + x7; x5 -= x7; /* third stage */ x7 = x8 + x3; x8 -= x3; x3 = x0 + x2; x0 -= x2; x2 = (181 * (x4 + x5) + 128) >> 8; x4 = (181 * (x4 - x5) + 128) >> 8; /* fourth stage */ blk[0] = (x7 + x1) >> 8; blk[1] = (x3 + x2) >> 8; blk[2] = (x0 + x4) >> 8; blk[3] = (x8 + x6) >> 8; blk[4] = (x8 - x6) >> 8; blk[5] = (x0 - x4) >> 8; blk[6] = (x3 - x2) >> 8; blk[7] = (x7 - x1) >> 8;}/* column (vertical) IDCT * * 7 pi 1 dst[8*k] = sum c[l] * src[8*l] * * cos( -- * ( k + - ) * l ) l=0 8 2 * * where: c[0] = 1/1024 c[1..7] = (1/1024)*sqrt(2) */static void idctcol (short *blk){ int x0, x1, x2, x3, x4, x5, x6, x7, x8; /* shortcut */ if (!((x1 = (blk[8 * 4] << 8)) | (x2 = blk[8 * 6]) | (x3 = blk[8 * 2]) | (x4 = blk[8 * 1]) | (x5 = blk[8 * 7]) | (x6 = blk[8 * 5]) | (x7 = blk[8 * 3]))) { blk[8 * 0] = blk[8 * 1] = blk[8 * 2] = blk[8 * 3] = blk[8 * 4] = blk[8 * 5] = blk[8 * 6] = blk[8 * 7] = iclp[(blk[8 * 0] + 32) >> 6]; return; } x0 = (blk[8 * 0] << 8) + 8192; /* first stage */ x8 = W7 * (x4 + x5) + 4; x4 = (x8 + (W1 - W7) * x4) >> 3; x5 = (x8 - (W1 + W7) * x5) >> 3; x8 = W3 * (x6 + x7) + 4; x6 = (x8 - (W3 - W5) * x6) >> 3; x7 = (x8 - (W3 + W5) * x7) >> 3; /* second stage */ x8 = x0 + x1; x0 -= x1; x1 = W6 * (x3 + x2) + 4; x2 = (x1 - (W2 + W6) * x2) >> 3; x3 = (x1 + (W2 - W6) * x3) >> 3; x1 = x4 + x6; x4 -= x6; x6 = x5 + x7; x5 -= x7; /* third stage */ x7 = x8 + x3; x8 -= x3; x3 = x0 + x2; x0 -= x2; x2 = (181 * (x4 + x5) + 128) >> 8; x4 = (181 * (x4 - x5) + 128) >> 8; /* fourth stage */ blk[8 * 0] = iclp[(x7 + x1) >> 14]; blk[8 * 1] = iclp[(x3 + x2) >> 14]; blk[8 * 2] = iclp[(x0 + x4) >> 14]; blk[8 * 3] = iclp[(x8 + x6) >> 14]; blk[8 * 4] = iclp[(x8 - x6) >> 14]; blk[8 * 5] = iclp[(x0 - x4) >> 14]; blk[8 * 6] = iclp[(x3 - x2) >> 14]; blk[8 * 7] = iclp[(x7 - x1) >> 14];}/* two dimensional inverse discrete cosine transform */void idct (short *block){ int i; for (i = 0; i < 8; i++) idctrow (block + 8 * i); for (i = 0; i < 8; i++) idctcol (block + i);}void init_idct (){ int i; iclp = iclip + 512; for (i = -512; i < 512; i++) iclp[i] = (i < -256) ? -256 : ((i > 255) ? 255 : i);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -