📄 hp48g(x) discrete kalman filter simulator.htm
字号:
src="HP48G(X) Discrete Kalman Filter Simulator.files/img37.gif" width=13
align=bottom> matrix is:
<P><IMG height=86 alt=displaymath275
src="HP48G(X) Discrete Kalman Filter Simulator.files/img38.gif" width=296
align=bottom>
<P>
<P>The <IMG height=15 alt=tex2html_wrap145
src="HP48G(X) Discrete Kalman Filter Simulator.files/img30.gif" width=13
align=bottom> vector is:
<P><IMG height=86 alt=displaymath276
src="HP48G(X) Discrete Kalman Filter Simulator.files/img39.gif" width=268
align=bottom>
<P>
<P>The <IMG height=13 alt=tex2html_wrap153
src="HP48G(X) Discrete Kalman Filter Simulator.files/img40.gif" width=16
align=bottom> vector is:
<P><IMG height=48 alt=displaymath277
src="HP48G(X) Discrete Kalman Filter Simulator.files/img41.gif" width=280
align=bottom>
<P>
<P>The <IMG height=14 alt=tex2html_wrap120
src="HP48G(X) Discrete Kalman Filter Simulator.files/img14.gif" width=19
align=bottom> matrix is:
<P><IMG height=86 alt=displaymath278
src="HP48G(X) Discrete Kalman Filter Simulator.files/img42.gif" width=281
align=bottom>
<P>
<P>The measurement error covariance <IMG height=14 alt=tex2html_wrap155
src="HP48G(X) Discrete Kalman Filter Simulator.files/img43.gif" width=13
align=bottom> is:
<P><IMG height=48 alt=displaymath279
src="HP48G(X) Discrete Kalman Filter Simulator.files/img44.gif" width=275
align=bottom>
<P>
<P>And we will assume <IMG height=17 alt=tex2html_wrap156
src="HP48G(X) Discrete Kalman Filter Simulator.files/img45.gif" width=60
align=bottom> and <IMG height=11 alt=tex2html_wrap157
src="HP48G(X) Discrete Kalman Filter Simulator.files/img46.gif" width=16
align=bottom> to be:
<P><IMG height=86 alt=displaymath280
src="HP48G(X) Discrete Kalman Filter Simulator.files/img47.gif" width=379
align=bottom>
<P>
<P>
<P><IMG height=20 alt=tex2html_wrap158
src="HP48G(X) Discrete Kalman Filter Simulator.files/img48.gif" width=13
align=bottom> The first step is to edit the " <IMG height=13
alt=tex2html_wrap159
src="HP48G(X) Discrete Kalman Filter Simulator.files/img49.gif" width=55
align=bottom> " program and make the modefications shown below: <B>
<P>?[[ 0 1 ] [ -4 -4 ]] 'F' STO [[ 0 ] [ 1 ]] 'G' STO [[ 1 1 ]] 'H' STO [[ 1 ]]
'W' STO .2 'T' STO [[ 0 ] [ 0 ]] [[ .2 ]] 'R' STO 'XHM' STO [[ .03125 0 ] [ 0
.125 ]] 'PM' STO [[ 0 ] [ 0 ]] 'X' STO 10 'KMAX' STO 1 'EL' STO? </B>
<P>Here <B>'EL' </B>is the state to be plotted, and <B>'KMAX'</B> is the maximum
range to be simulated.
<P>
<P><IMG height=13 alt=tex2html_wrap160
src="HP48G(X) Discrete Kalman Filter Simulator.files/img50.gif" width=7
align=bottom> ) Run this program ( <IMG height=13 alt=tex2html_wrap159
src="HP48G(X) Discrete Kalman Filter Simulator.files/img49.gif" width=55
align=bottom> ) to store the values just edited.
<P><IMG height=13 alt=tex2html_wrap162
src="HP48G(X) Discrete Kalman Filter Simulator.files/img51.gif" width=8
align=bottom> ) Run <IMG height=18 alt=tex2html_wrap133
src="HP48G(X) Discrete Kalman Filter Simulator.files/img21.gif" width=37
align=bottom> to calculate <IMG height=17 alt=tex2html_wrap164
src="HP48G(X) Discrete Kalman Filter Simulator.files/img52.gif" width=10
align=bottom> and <IMG height=18 alt=tex2html_wrap134
src="HP48G(X) Discrete Kalman Filter Simulator.files/img22.gif" width=13
align=bottom>
<P><IMG height=14 alt=tex2html_wrap166
src="HP48G(X) Discrete Kalman Filter Simulator.files/img53.gif" width=8
align=bottom> ) Run <IMG height=15 alt=tex2html_wrap135
src="HP48G(X) Discrete Kalman Filter Simulator.files/img23.gif" width=63
align=bottom> to generate the state white sequence <IMG height=9
alt=tex2html_wrap168
src="HP48G(X) Discrete Kalman Filter Simulator.files/img54.gif" width=13
align=bottom>
<P><IMG height=13 alt=tex2html_wrap169
src="HP48G(X) Discrete Kalman Filter Simulator.files/img55.gif" width=9
align=bottom> ) Run <IMG height=15 alt=tex2html_wrap137
src="HP48G(X) Discrete Kalman Filter Simulator.files/img24.gif" width=66
align=bottom> to generate the output white sequence <IMG height=9
alt=tex2html_wrap171
src="HP48G(X) Discrete Kalman Filter Simulator.files/img56.gif" width=9
align=bottom>
<P><IMG height=14 alt=tex2html_wrap172
src="HP48G(X) Discrete Kalman Filter Simulator.files/img57.gif" width=8
align=bottom> ) Run <IMG height=15 alt=tex2html_wrap139
src="HP48G(X) Discrete Kalman Filter Simulator.files/img25.gif" width=65
align=bottom> to do the simulation (it will take some time).
<P><IMG height=14 alt=tex2html_wrap174
src="HP48G(X) Discrete Kalman Filter Simulator.files/img58.gif" width=8
align=bottom> ) And then <IMG height=17 alt=tex2html_wrap175
src="HP48G(X) Discrete Kalman Filter Simulator.files/img59.gif" width=55
align=bottom> , and <IMG height=9 alt=tex2html_wrap147
src="HP48G(X) Discrete Kalman Filter Simulator.files/img32.gif" width=8
align=bottom> can be ploted using <IMG height=18 alt=tex2html_wrap177
src="HP48G(X) Discrete Kalman Filter Simulator.files/img60.gif" width=200
align=bottom> , and <IMG height=15 alt=tex2html_wrap146
src="HP48G(X) Discrete Kalman Filter Simulator.files/img31.gif" width=51
align=bottom> .
<P><IMG height=14 alt=tex2html_wrap179
src="HP48G(X) Discrete Kalman Filter Simulator.files/img61.gif" width=8
align=bottom> ) Now go into the picture mode to see the results.
<P><B>NOTES:</B> The programs needed compose a total of 10K of memory, but once
the databases are created, this number grows substantially. Run <IMG height=15
alt=tex2html_wrap180
src="HP48G(X) Discrete Kalman Filter Simulator.files/img62.gif" width=73
align=bottom> to clear the databases. The larger the KMAX variable and the
number of states, the longer time and space the simulation will require.
<P><B>Another example</B>
<P>Let's assume this time we have a Gauss-Markov Process described by
<P><IMG height=41 alt=displaymath281
src="HP48G(X) Discrete Kalman Filter Simulator.files/img63.gif" width=402
align=bottom>
<P>
<P>The noise measurements will be taken at <IMG height=14 alt=tex2html_wrap181
src="HP48G(X) Discrete Kalman Filter Simulator.files/img64.gif" width=32
align=bottom> intervals of time, the measurement error will have a covariance
<IMG height=14 alt=tex2html_wrap155
src="HP48G(X) Discrete Kalman Filter Simulator.files/img43.gif" width=13
align=bottom> of <IMG height=13 alt=tex2html_wrap160
src="HP48G(X) Discrete Kalman Filter Simulator.files/img50.gif" width=7
align=bottom> , and the measurement relationship <IMG height=13
alt=tex2html_wrap153
src="HP48G(X) Discrete Kalman Filter Simulator.files/img40.gif" width=16
align=bottom> to <IMG height=9 alt=tex2html_wrap127
src="HP48G(X) Discrete Kalman Filter Simulator.files/img19.gif" width=10
align=bottom> is <IMG height=13 alt=tex2html_wrap160
src="HP48G(X) Discrete Kalman Filter Simulator.files/img50.gif" width=7
align=bottom> . The following is the input data: <IMG height=21
alt=tex2html_wrap187
src="HP48G(X) Discrete Kalman Filter Simulator.files/img65.gif" width=386
align=bottom> and <IMG height=17 alt=tex2html_wrap188
src="HP48G(X) Discrete Kalman Filter Simulator.files/img66.gif" width=58
align=bottom>
<P>The following is the <IMG height=13 alt=tex2html_wrap159
src="HP48G(X) Discrete Kalman Filter Simulator.files/img49.gif" width=55
align=bottom> program:
<P><B>
<P>?[[ 1 ]] 'F' STO [[ 1.414 ]] 'G' STO [[ 1 ]] 'H' STO [[ 1 ]] 'W' STO .02 'T'
STO [[ 0 ]] [[ 1 ]] 'R' STO 'XHM' STO [[ 1 ]] 'PM' STO [[ 0 ]] 'X' STO 50 'KMAX'
STO 1 'EL' STO?
<P>Some hints: </B>
<P>* Set your calculator to radians
<P>* For reasonable approximation, set the decimal places to 4 (FIX)
<P>* If you already have the covariance Q and/or the transition matrix, insert
them into "Q" and "PHI" just before running "SIM->"
<P>* A reasonable "KMAX" is about 30
<P>* The "PPAR" that comes with the program should be present at all times
<P>* All parameters (i.e, F, G, etc) should be written in matrix form [[ ]]
<P>
<P><BR>
<HR>
<P>
<ADDRESS>
<CENTER>Now you can access the <A
href="http://riccati.isu.edu/~martin/kalman/download.html">Download Page</A>
<P>You may want to visit some <A
href="http://riccati.isu.edu/~martin/kalman/links.html">Related Links</A>
<P>
<HR>
<ADDRESS></ADDRESS></CENTER></ADDRESS></BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -