⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ltc_tommath.h

📁 该压缩包中包括 tom的加密函数库及pdf说明 ,以及Rinick s ECC:椭圆曲线非对称加密密钥生成器
💻 H
📖 第 1 页 / 共 2 页
字号:
/* ---> Basic arithmetic <--- *//* b = -a */int mp_neg(mp_int *a, mp_int *b);/* b = |a| */int mp_abs(mp_int *a, mp_int *b);/* compare a to b */int mp_cmp(mp_int *a, mp_int *b);/* compare |a| to |b| */int mp_cmp_mag(mp_int *a, mp_int *b);/* c = a + b */int mp_add(mp_int *a, mp_int *b, mp_int *c);/* c = a - b */int mp_sub(mp_int *a, mp_int *b, mp_int *c);/* c = a * b */int mp_mul(mp_int *a, mp_int *b, mp_int *c);/* b = a*a  */int mp_sqr(mp_int *a, mp_int *b);/* a/b => cb + d == a */int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);/* c = a mod b, 0 <= c < b  */int mp_mod(mp_int *a, mp_int *b, mp_int *c);/* ---> single digit functions <--- *//* compare against a single digit */int mp_cmp_d(mp_int *a, mp_digit b);/* c = a + b */int mp_add_d(mp_int *a, mp_digit b, mp_int *c);/* c = a - b */int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);/* c = a * b */int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);/* a/b => cb + d == a */int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);/* a/3 => 3c + d == a */int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);/* c = a**b */int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);/* c = a mod b, 0 <= c < b  */int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);/* ---> number theory <--- *//* d = a + b (mod c) */int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);/* d = a - b (mod c) */int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);/* d = a * b (mod c) */int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);/* c = a * a (mod b) */int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);/* c = 1/a (mod b) */int mp_invmod(mp_int *a, mp_int *b, mp_int *c);/* c = (a, b) */int mp_gcd(mp_int *a, mp_int *b, mp_int *c);/* produces value such that U1*a + U2*b = U3 */int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);/* c = [a, b] or (a*b)/(a, b) */int mp_lcm(mp_int *a, mp_int *b, mp_int *c);/* finds one of the b'th root of a, such that |c|**b <= |a| * * returns error if a < 0 and b is even */int mp_n_root(mp_int *a, mp_digit b, mp_int *c);/* special sqrt algo */int mp_sqrt(mp_int *arg, mp_int *ret);/* is number a square? */int mp_is_square(mp_int *arg, int *ret);/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */int mp_jacobi(mp_int *a, mp_int *n, int *c);/* used to setup the Barrett reduction for a given modulus b */int mp_reduce_setup(mp_int *a, mp_int *b);/* Barrett Reduction, computes a (mod b) with a precomputed value c * * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. */int mp_reduce(mp_int *a, mp_int *b, mp_int *c);/* setups the montgomery reduction */int mp_montgomery_setup(mp_int *a, mp_digit *mp);/* computes a = B**n mod b without division or multiplication useful for * normalizing numbers in a Montgomery system. */int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);/* computes x/R == x (mod N) via Montgomery Reduction */int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);/* returns 1 if a is a valid DR modulus */int mp_dr_is_modulus(mp_int *a);/* sets the value of "d" required for mp_dr_reduce */void mp_dr_setup(mp_int *a, mp_digit *d);/* reduces a modulo b using the Diminished Radix method */int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);/* returns true if a can be reduced with mp_reduce_2k */int mp_reduce_is_2k(mp_int *a);/* determines k value for 2k reduction */int mp_reduce_2k_setup(mp_int *a, mp_digit *d);/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);/* returns true if a can be reduced with mp_reduce_2k_l */int mp_reduce_is_2k_l(mp_int *a);/* determines k value for 2k reduction */int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);/* d = a**b (mod c) */int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);/* ---> Primes <--- *//* number of primes */#ifdef MP_8BIT   #define PRIME_SIZE      31#else   #define PRIME_SIZE      256#endif/* table of first PRIME_SIZE primes */extern const mp_digit ltm_prime_tab[];/* result=1 if a is divisible by one of the first PRIME_SIZE primes */int mp_prime_is_divisible(mp_int *a, int *result);/* performs one Fermat test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */int mp_prime_fermat(mp_int *a, mp_int *b, int *result);/* performs one Miller-Rabin test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);/* This gives [for a given bit size] the number of trials required * such that Miller-Rabin gives a prob of failure lower than 2^-96  */int mp_prime_rabin_miller_trials(int size);/* performs t rounds of Miller-Rabin on "a" using the first * t prime bases.  Also performs an initial sieve of trial * division.  Determines if "a" is prime with probability * of error no more than (1/4)**t. * * Sets result to 1 if probably prime, 0 otherwise */int mp_prime_is_prime(mp_int *a, int t, int *result);/* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */int mp_prime_next_prime(mp_int *a, int t, int bbs_style);/* makes a truly random prime of a given size (bytes), * call with bbs = 1 if you want it to be congruent to 3 mod 4  * * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself * so it can be NULL * * The prime generated will be larger than 2^(8*size). */#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)/* makes a truly random prime of a given size (bits), * * Flags are as follows: *  *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one * * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself * so it can be NULL * */int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);/* ---> radix conversion <--- */int mp_count_bits(mp_int *a);int mp_unsigned_bin_size(mp_int *a);int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);int mp_to_unsigned_bin(mp_int *a, unsigned char *b);int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);int mp_signed_bin_size(mp_int *a);int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);int mp_to_signed_bin(mp_int *a,  unsigned char *b);int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);int mp_read_radix(mp_int *a, const char *str, int radix);int mp_toradix(mp_int *a, char *str, int radix);int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);int mp_radix_size(mp_int *a, int radix, int *size);int mp_fread(mp_int *a, int radix, FILE *stream);int mp_fwrite(mp_int *a, int radix, FILE *stream);#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))#define mp_raw_size(mp)           mp_signed_bin_size(mp)#define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))#define mp_mag_size(mp)           mp_unsigned_bin_size(mp)#define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str))#define mp_tobinary(M, S)  mp_toradix((M), (S), 2)#define mp_tooctal(M, S)   mp_toradix((M), (S), 8)#define mp_todecimal(M, S) mp_toradix((M), (S), 10)#define mp_tohex(M, S)     mp_toradix((M), (S), 16)/* lowlevel functions, do not call! */int s_mp_add(mp_int *a, mp_int *b, mp_int *c);int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);int fast_s_mp_sqr(mp_int *a, mp_int *b);int s_mp_sqr(mp_int *a, mp_int *b);int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);int mp_karatsuba_sqr(mp_int *a, mp_int *b);int mp_toom_sqr(mp_int *a, mp_int *b);int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode);void bn_reverse(unsigned char *s, int len);extern const char *mp_s_rmap;#ifdef __cplusplus   }#endif#endif/* $Source: /cvs/libtom/libtomcrypt/src/headers/ltc_tommath.h,v $ *//* $Revision: 1.4 $ *//* $Date: 2005/05/05 14:35:58 $ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -