📄 volume.cpp
字号:
/*
* Copyright 2003 by Texas Instruments Incorporated.
* All rights reserved. Property of Texas Instruments Incorporated.
* Restricted rights to use, duplicate or disclose this code are
* granted through contract.
*
*/
/* "@(#) DSP/BIOS 4.90.270 01-13-05 (barracuda-o07)" */
/***************************************************************************/
/* */
/* V O L U M E . C */
/* */
/* Audio gain processing in a main loop */
/* */
/***************************************************************************/
#include "cxcore.h"
#include <stdlib.h>
#include <stdio.h>
#include "_cv.h"
#include "_cxcore.h"
#include "volume.h"
/* Global declarations */
/*void cvShiftDFT(CvArr * src_arr, CvArr * dst_arr )
{
CvMat * tmp;
CvMat q1stub, q2stub;
CvMat q3stub, q4stub;
CvMat d1stub, d2stub;
CvMat d3stub, d4stub;
CvMat * q1, * q2, * q3, * q4;
CvMat * d1, * d2, * d3, * d4;
CvSize size = cvGetSize(src_arr);
CvSize dst_size = cvGetSize(dst_arr);
int cx, cy;
if(dst_size.width != size.width ||
dst_size.height != size.height){
cvError( CV_StsUnmatchedSizes, "cvShiftDFT", "Source and Destination arrays must have equal sizes", __FILE__, __LINE__ );
}
if(src_arr==dst_arr){
tmp = cvCreateMat(size.height/2, size.width/2, cvGetElemType(src_arr));
}
cx = size.width/2;
cy = size.height/2; // image center
q1 = cvGetSubRect( src_arr, &q1stub, cvRect(0,0,cx, cy) );
q2 = cvGetSubRect( src_arr, &q2stub, cvRect(cx,0,cx,cy) );
q3 = cvGetSubRect( src_arr, &q3stub, cvRect(cx,cy,cx,cy) );
q4 = cvGetSubRect( src_arr, &q4stub, cvRect(0,cy,cx,cy) );
d1 = cvGetSubRect( src_arr, &d1stub, cvRect(0,0,cx,cy) );
d2 = cvGetSubRect( src_arr, &d2stub, cvRect(cx,0,cx,cy) );
d3 = cvGetSubRect( src_arr, &d3stub, cvRect(cx,cy,cx,cy) );
d4 = cvGetSubRect( src_arr, &d4stub, cvRect(0,cy,cx,cy) );
if(src_arr!=dst_arr){
if( !CV_ARE_TYPES_EQ( q1, d1 )){
cvError( CV_StsUnmatchedFormats, "cvShiftDFT", "Source and Destination arrays must have the same format", __FILE__, __LINE__ );
}
cvCopy(q3, d1, 0);
cvCopy(q4, d2, 0);
cvCopy(q1, d3, 0);
cvCopy(q2, d4, 0);
}
else{
cvCopy(q3, tmp, 0);
cvCopy(q1, q3, 0);
cvCopy(tmp, q1, 0);
cvCopy(q4, tmp, 0);
cvCopy(q2, q4, 0);
cvCopy(tmp, q2, 0);
}
}
/*
* ======== main ========
*/
int main()
{
/* CvMat* mat_01,* mat_02,* mat_03;
mat_01 = cvCreateMat( 3, 3, CV_64FC1 );
mat_02 = cvCreateMat( 3, 3, CV_64FC1 );
mat_03 = cvCreateMat( 3, 3, CV_64FC1 );
double a[9]={1,2,3,
4,5,6,
7,8,9};
cvInitMatHeader(mat_01,3,3,CV_64FC1,a);
//复制
mat_02=cvCloneMat(mat_01);
cvMatMulAdd(mat_01,mat_02,0,mat_03);
for (int i=0;i<3;i++)
{
for (int j=0;j<3;j++)
{
printf("%f ",CV_MAT_ELEM(* mat_03,double,i,j));
}
printf("\n");
}
double test=pow( (CV_MAT_ELEM(* mat_03,double,1,1)-CV_MAT_ELEM( *mat_03,double,1,2)),2 );
printf("%f",test);
cvReleaseMat(&mat_01);
cvReleaseMat(&mat_02);
cvReleaseMat(&mat_03);
*/
IplImage * pImag = NULL;
IplImage * pCannyImag = NULL;
if ((pImag = cvCreateImage( cvSize( 500, 500 ), 8, 1 )) !=0 )
{
pCannyImag = cvCreateImage(cvGetSize(pImag),IPL_DEPTH_8U,1);
cvCanny(pImag,pCannyImag,50,150,3);
cvSaveImage("lena1.bmp",pCannyImag);
cvReleaseImage(&pCannyImag);
return 0;
}
/* IplImage * im;
IplImage * realInput;
IplImage * imaginaryInput;
IplImage * complexInput;
int dft_M, dft_N;
CvMat* dft_A, tmp;
IplImage * image_Re;
IplImage * image_Im;
double m, M;
im = cvCreateImage( cvSize( 500, 500 ), 8, 1 );
if( !im )
return -1;
realInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1);
imaginaryInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1);
complexInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 2);
cvScale(im, realInput, 1.0, 0.0);
cvZero(imaginaryInput);
cvMerge(realInput, imaginaryInput, NULL, NULL, complexInput);
dft_M = cvGetOptimalDFTSize( im->height - 1 );
dft_N = cvGetOptimalDFTSize( im->width - 1 );
dft_A = cvCreateMat( dft_M, dft_N, CV_64FC2 );
image_Re = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1);
image_Im = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1);
// copy A to dft_A and pad dft_A with zeros
cvGetSubRect( dft_A, &tmp, cvRect(0,0, im->width, im->height));
cvCopy( complexInput, &tmp, NULL );
if( dft_A->cols > im->width )
{
cvGetSubRect( dft_A, &tmp, cvRect(im->width,0, dft_A->cols - im->width, im->height));
cvZero( &tmp );
}
// no need to pad bottom part of dft_A with zeros because of
// use nonzero_rows parameter in cvDFT() call below
cvDFT( dft_A, dft_A, CV_DXT_FORWARD, complexInput->height );
// Split Fourier in real and imaginary parts
cvSplit( dft_A, image_Re, image_Im, 0, 0 );
// Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2)
cvPow( image_Re, image_Re, 2.0);
cvPow( image_Im, image_Im, 2.0);
cvAdd( image_Re, image_Im, image_Re, NULL);
cvPow( image_Re, image_Re, 0.5 );
// Compute log(1 + Mag)
cvAddS( image_Re, cvScalarAll(1.0), image_Re, NULL ); // 1 + Mag
cvLog( image_Re, image_Re ); // log(1 + Mag)
// Rearrange the quadrants of Fourier image so that the origin is at
// the image center
cvShiftDFT( image_Re, image_Re );
cvMinMaxLoc(image_Re, &m, &M, NULL, NULL, NULL);
cvScale(image_Re, image_Re, 1.0/(M-m), 1.0*(-m)/(M-m));
cvSaveImage("lena1.bmp", image_Re);
/* CvMat* mat_01,* dst,* delta;
mat_01 = cvCreateMat( 3, 3, CV_64FC1 );
//dst = cvCreateMat( 3, 3, CV_64FC1 );
delta = cvCreateMat( 3, 3, CV_64FC1 );
double a[9]={1,2,3,
4,5,6,
7,8,9};
double b[9]={1,1,1,
1,1,1,
3,3,5};
cvInitMatHeader(mat_01,3,3,CV_64FC1,a);
cvInitMatHeader(delta,3,3,CV_64FC1,b);
cvAdd( mat_01,delta, mat_01);
for (int i=0;i<3;i++)
{
for (int j=0;j<3;j++)
{
printf("%f",CV_MAT_ELEM(* mat_01,double,i,j));
}
printf("\n");
}
cvReleaseMat(&mat_01);
//cvReleaseMat(&dst);
cvReleaseMat(&delta);
*/
puts("volume example end\n");
}
/*
* ======== processing ========
*
* FUNCTION: apply signal processing transform to input signal.
*
* PARAMETERS: address of input and output buffers.
*
* RETURN VALUE: TRUE.
*/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -