📄 segmentskin.m
字号:
function [skin1, skin2, optimalThreshold] = SegmentSkin(filename, bmean, rmean, brcov)
% Assume the skinmodel.m is run
% Produce two images, skinlikelihood greyscale image, skin1
% and skin segment binary image, skin2
im = imread(filename);
imycbcr = rgb2ycbcr(im);
dim = size(im);
skin1 = zeros(dim(1), dim(2));
for i = 1:dim(1)
for j = 1:dim(2)
cb = double(imycbcr(i,j,2));
cr = double(imycbcr(i,j,3));
x = [(cb-bmean); (cr-rmean)];
skin1(i,j) = exp(-0.5* x'*inv(brcov)* x);
end
end
lpf= 1/9*ones(3);
skin1 = filter2(lpf,skin1);
skin1 = skin1./max(max(skin1));
% Adaptive Thresholding
previousSkin2 = zeros(i,j);
changelist = [];
for threshold = 0.55:-0.1:0.05
skin2 = zeros(i,j);
skin2(find(skin1>threshold)) = 1;
change = sum(sum(skin2 - previousSkin2));
changelist = [changelist change];
previousSkin2 = skin2;
end
% Finding the optimal threshold
[C, I] = min(changelist);
optimalThreshold = (7-I)*0.1
skin2 = zeros(i,j);
skin2(find(skin1>optimalThreshold)) = 1;
figure(1)
imshow(skin1, [0 1]);
figure(2)
imshow(skin2, [0 1]);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -