⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sammon.m

📁 用matlab实现利用统计混沌方法解决非线性系统时间序列预测的问题
💻 M
字号:
function P = sammon(D, P, varargin)%SAMMON Computes Sammon's projection for data or map.%% P = sammon(D, P, [value], [mode], [alpha], [Mdist])%% ARGUMENTS ([]'s are optional) %%  D        (matrix or data struct or map struct) data to be projected%            NOTE: the data may _not_ have unknown components%  P        (scalar or matrix) output dimension, or the initial%            projection matrix, size dlen x odim%  [value]  (scalar) all different modes (the next argument) require %            a value, default = 100%  [mode]   (string) 'steps' or 'errlimit' or 'errchange' or 'seconds',%            see below, default is 'steps'%  [alpha]  (scalar) iteration step size, default = 0.2%  [Mdist]  (matrix) mutual distances between data vectors in the input %            space, size dlen x dlen, by default the euclidian distances%            are used% % RETURNS   %%  P        (matrix) projected coordinates of each data vector%% The output dimension must be 2 or higher but (naturally) lower % than data set dimension.%% The mode argument determines the end condition for iteration. If % the mode argument is used, also the value argument has to be % specified. Different mode possibilities are %% 'steps'      the iteration is terminated when it is run <value> % 'errlimit'   steps, the iteration is terminated when projection error %              is lower than <value>,% 'errchange'  the iteration is terminated when change between %              projection error on two successive iteration rounds%	       is less than <value> percent of total error, and% 'seconds'    the iteration is terminated after <value> seconds %              of iteration.%% EXAMPLES%% P = sammon(sMap,3)  %  projects the codebook vectors of the map to 3-dimensions. The %  projection can be visualized with som_showgrid like this: %  som_showgrid(sMap,P)%% P = sammon(sMap,3,[],[],[],Md)%  same as above, but uses a precalculated mutual distance matrix Md%% P = sammon(sMap,som_projection(sMap,3,'pca'),20,'steps')%  same as above, but with PCA initialization, in which case the %  number of training steps can be lowered%% P = sammon(sData,2,60,'seconds')%  projects the data matrix of sData to a plane iterating for 60 seconds%%% See also CCA, PCA, SOM_GRID.% Copyright (c) 1997 by the SOM toolbox programming team.% http://www.cis.hut.fi/projects/somtoolbox/% Version 1.0beta juuso 260997, 090997, 191297, ecco 030997, 180997 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% check argumentserror(nargchk(2, 6, nargin));  % check no. of input arguments is correct% input dataif isstruct(D),  if isfield(D, 'data'),         D = D.data; % data struct  elseif isfield(D, 'codebook'), D = D.codebook; % map struct  else error('Invalid structure');  endendif any(isnan(D)),   error('Cannot make Sammon''s projection for data with unknown components')end % compute data dimensionsorig_si = size(D); dim = orig_si(end); noc = prod(orig_si)/dim;if length(orig_si)>2, D = reshape(D,[noc dim]); end% output dimension / initial projection matrixif prod(size(P))==1,   odim = P;   P = rand(noc,odim)-0.5; else   si = size(P);  odim = si(end);  if prod(si) ~= noc*odim,     error('Initial projection matrix size does not match data size');  end  if length(si)>2, P = reshape(P,[noc odim]); end  inds = find(isnan(P));   if length(inds), P(inds) = rand(size(inds)); endendif odim > dim | odim < 2,   error('Output dimension must be within [2, dimension of data]');end% determine operating modeif nargin < 3 | isnan(varargin{1}) | isempty(varargin{1}), value=100;else value = varargin{1}; endif nargin < 4 | isnan(varargin{2}) | isempty(varargin{2}), mode='steps';else mode = varargin{2}; end  switch mode,case 'steps',     runlen = value;case 'errlimit',  errlimit = value;case 'errchange', errchange = value; e_prev = 0;case 'seconds',   endtime = value;otherwise, error(['Illegal mode: ' mode]);end% iteration step sizeif nargin > 4, alpha = varargin{3}; else alpha = NaN; endif isnan(alpha) | isempty(alpha), alpha = 0.2; end% mutual distancesif nargin > 5, Mdist = varargin{4}; else Mdist = []; end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% initialization% these are used quite frequentlynoc_x_1  = ones(noc, 1); odim_x_1 = ones(odim,1); % compute mutual distances between vectorsif isempty(Mdist) | isnan(Mdist),   fprintf(2, 'computing mutual distances\r');  for i = 1:noc,    vec         = D(i, :);    Diff        = D - vec(noc_x_1, 1:dim);    Mdist(i, :) = sqrt(sum((Diff.^2)'));    endelse  if size(Mdist) ~= [noc noc],     error('Mutual distance matrix size and data set size do not match');   endend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% actionif strcmp(mode, 'seconds'), tic; end;fprintf(2, 'iterating                    \r');% sammon iteration   x  = P ;xu = zeros(noc, odim);xd = zeros(noc, odim);dq = zeros(noc, 1);dr = zeros(noc, 1);i = 0;ready = 0;while ~ready  for j = 1:noc,    xd      = -x + x(j*noc_x_1,:);    xd2     = xd.^2;    dpj     = sqrt(sum(xd2'))';    dq      = Mdist(:,j) - dpj;    dr      = Mdist(:,j) .* dpj;    ind     = find(dr ~= 0);    term    = dq(ind) ./ dr(ind);    e1      = sum(xd(ind,:) .* term(:,odim_x_1));    term2   = ((1.0 + dq(ind) ./ dpj(ind)) ./ dpj(ind)) ./ dr(ind);    e2      = sum(term) - sum(xd2(ind,:) .* term2(:,odim_x_1));    xu(j,:) = x(j,:) + alpha * e1 ./ abs(e2);  end  % move the center of mass to the center   c = sum(xu) / noc;  x = xu - c(noc_x_1, :);  % compute mapping error  % you can speed the computation by about 20-25% by skipping this part  e = 0; tot = 0;  for j = 2:noc,     d   = Mdist(1:(j - 1), j);    tot = tot + sum(d);    ind = find(d ~= 0);    xd  = -x(1:(j - 1), :) + x(j * ones(j - 1, 1), :);    ee  = d - sqrt(sum(xd'.^2))';    e   = e + sum(ee(ind).^2 ./ d(ind));  end  e = e/tot;   i = i + 1;  fprintf(2, '\r%d iterations, error %f', i, e);  % determine is the iteration ready    switch mode    case 'steps',       if i == runlen, ready = 1; end;    case 'errlimit',      if e < errlimit, ready = 1; end;    case 'errchange',      if i > 1	change = 100 * abs(e - e_prev) / e_prev;	if change < errchange, ready = 1; end;	fprintf(2, ', change of error %f %%    ', change);      end      e_prev = e;    case 'seconds'      if toc > endtime, ready = 1; end;      fprintf(2, ', elapsed time %f seconds  ', toc);  end  fprintf(2, '        ');    % If you want to see the Sammon's projection plotted (in 2-D and 3-D case),  % uncomment the code below; it is not in use by default to speed up   % computation.  %  %  clf  %  if odim == 1,   %    plot(x(:,1), noc_x_1, 'o');  %  elseif odim == 2,   %    plot(x(:,1), x(:,2), 'o');  %  else  %    plot3(x(:,1), x(:,2), x(:,3), 'o')  %  end  %  drawnowendfprintf(2, '\n');%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clean up% reshapeorig_si(end) = odim; P = reshape(x, orig_si);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -