⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cca.m

📁 用matlab实现利用统计混沌方法解决非线性系统时间序列预测的问题
💻 M
字号:
function [P] = cca(D, P, epochs, Mdist, alfa0, lambda0)%CCA Projects data vectors using Curvilinear Component Analysis.%% P = cca(D, P, epochs, [Mdist], [alpha0], [lambda0])%% ARGUMENTS ([]'s are optional)%%  D          (matrix) the data matrix, size dlen x dim%  P          (matrix or scalar) initial projection, size dlen x odim,%              or the output dimension %  epochs     (scalar) training length%  [alpha0]   (scalar) initial step size, 0.5 by default%  [lambda0]  (scalar) initial radius of influence, 3*max(std(D)) by default%  [Mdist]    (matrix) mutual distance matrix: if the distances in%              the input space should be calculated otherwise than%              as euclidian distances, the distance from each vector%              to each other vector can be given here, size dlen x dlen,%              if not spececified euclidian distances are used% RETURNS%  %  P          (matrix) the projections, size dlen x odim%% Unknown values (NaN's) in the data: projections of vectors with % unknown components tend to drift towards the center of the % projection distribution. Projections of totally unknown vectors% are set to unknown (NaN).%% EXAMPLES%% P = cca(D, 2, 10); %projects the given data to a plane% P = cca(D, pca(D,2), 5); %does the same, but with PCA initialization% P = cca(D, 2, 10, Mdist); %same, but mutual distance matrix is given%% See also SAMMON, PCA, SOM_GRID. % Copyright (c) 1997 by the SOM toolbox programming team.% http://www.cis.hut.fi/projects/somtoolbox/% Version 1.0beta juuso 171297%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Check arguments error(nargchk(3, 6, nargin)); % check the number of input arguments% input data[noc dim] = size(D);noc_x_1  = ones(noc, 1); % used frequentlyme = zeros(1,dim); st = zeros(1,dim);for i=1:dim,  me(i) = mean(D(find(isfinite(D(:,i))),i));  st(i) = std(D(find(isfinite(D(:,i))),i));end% initial projectionif prod(size(P))==1,   P = (2*rand(noc,P)-1).*st(noc_x_1,1:P) + me(noc_x_1,1:P); else  % replace unknown projections with known values  inds = find(isnan(P)); P(inds) = rand(size(inds));end[dummy odim] = size(P);odim_x_1  = ones(odim, 1); % used frequently% training lengthtrain_len = epochs*noc;% random sample orderrand('state',sum(100*clock));sample_inds = ceil(noc*rand(train_len,1));% mutual distancesif nargin<4 | isnan(Mdist) | isempty(Mdist),   fprintf(2, 'computing mutual distances\r');  dim_x_1 = ones(dim,1);  for i = 1:noc,    x = D(i,:);     Diff = D - x(noc_x_1,:);    N = isnan(Diff);    Diff(find(N)) = 0;     Mdist(:,i) = sqrt((Diff.^2)*dim_x_1);    N = find(sum(N')==dim); %mutual distance unknown    if ~isempty(N), Mdist(N,i) = NaN; end  endend% alpha and lambdaif nargin<5 | isempty(alpha0) | isnan(alpha0), alpha0 = 0.5; endalpha = potency_curve(alpha0,alpha0/100,train_len);if nargin<6 | isempty(lambda0) | isnan(lambda0), lambda0 = max(st)*3; endlambda = potency_curve(lambda0,0.01,train_len);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Actionk=0; fprintf(2, 'iterating: %d / %d epochs\r',k,epochs);for i=1:train_len,     ind = sample_inds(i);     % sample index  dx = Mdist(:,ind);        % mutual distances in input space  known = find(~isnan(dx)); % known distances  if ~isempty(known),    % sample vector's projection    y = P(ind,:);                     % distances in output space    Dy = P(known,:) - y(noc_x_1(known),:);     dy = sqrt((Dy.^2)*odim_x_1);                 % relative effect    dy(find(dy==0)) = 1;        % to get rid of div-by-zero's    fy = exp(-dy/lambda(i)) .* (dx(known) ./ dy - 1);      % update    P(known,:) = P(known,:) + alpha(i)*fy(:,odim_x_1).*Dy;  end  % track  if rem(i,noc)==0,     k=k+1; fprintf(2, 'iterating: %d / %d epochs\r',k,epochs);  endend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear up% calculate errorerror = cca_error(P,Mdist,lambda(train_len));fprintf(2,'%d iterations, error %f          \n', epochs, error);% set projections of totally unknown vectors as unknownunknown = find(sum(isnan(D)')==dim);P(unknown,:) = NaN;return;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tips% to plot the results, use the code belowsubplot(2,1,1), switch(odim), case 1, plot(P(:,1),ones(dlen,1),'x')case 2, plot(P(:,1),P(:,2),'x'); otherwise, plot3(P(:,1),P(:,2),P(:,3),'x'); rotate3d onendsubplot(2,1,2), dydxplot(P,Mdist);% to a project a new point x in the input space to the output space% do the following:% Diff = D - x(noc_x_1,:); Diff(find(isnan(Diff))) = 0; % dx = sqrt((Diff.^2)*dim_x_1);% p = project_point(P,x,dx); % tlen = size(p,1);% plot(P(:,1),P(:,2),'bx',p(tlen,1),p(tlen,2),'ro',p(:,1),p(:,2),'r-')% similar trick can be made to the other directionreturn;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% subfunctionsfunction vals = potency_curve(v0,vn,l)  % curve that decreases from v0 to vn with a rate that is   % somewhere between linear and 1/t  vals = v0 * (vn/v0).^([0:(l-1)]/(l-1));function error = cca_error(P,Mdist,lambda)  [noc odim] = size(P);  noc_x_1 = ones(noc,1);  odim_x_1 = ones(odim,1);  error = 0;  for i=1:noc,    known = find(~isnan(Mdist(:,i)));    if ~isempty(known),         y = P(i,:);                       Dy = P(known,:) - y(noc_x_1(known),:);      dy = sqrt((Dy.^2)*odim_x_1);      fy = exp(-dy/lambda);      error = error + sum(((Mdist(known,i) - dy).^2).*fy);    end  end  error = error/2;function [] = dydxplot(P,Mdist)  [noc odim] = size(P);  noc_x_1 = ones(noc,1);  odim_x_1 = ones(odim,1);  Pdist = zeros(noc,noc);      for i=1:noc,    y = P(i,:);                     Dy = P - y(noc_x_1,:);    Pdist(:,i) = sqrt((Dy.^2)*odim_x_1);  end  Pdist = tril(Pdist,-1);   inds = find(Pdist > 0);   n = length(inds);  plot(Pdist(inds),Mdist(inds),'.');  xlabel('dy'), ylabel('dx')function p = project_point(P,x,dx)  [noc odim] = size(P);  noc_x_1 = ones(noc,1);  odim_x_1 = ones(odim,1);  % initial projection  [dummy,i] = min(dx);  y = P(i,:)+rand(1,odim)*norm(P(i,:))/20;   % lambda   lambda = norm(std(P));  % termination  eps = 1e-3; i_max = noc*10;    i=1; p(i,:) = y;   ready = 0;  while ~ready,    % mutual distances    Dy = P - y(noc_x_1,:);        % differences in output space    dy = sqrt((Dy.^2)*odim_x_1);  % distances in output space    f = exp(-dy/lambda);      fprintf(2,'iteration %d, error %g \r',i,sum(((dx - dy).^2).*f));    % all the other vectors push the projected one    fy = f .* (dx ./ dy - 1) / sum(f);      % update        step = - sum(fy(:,odim_x_1).*Dy);    y = y + step;      i=i+1;    p(i,:) = y;       ready = (norm(step)/norm(y) < eps | i > i_max);  end  fprintf(2,'\n');       

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -