📄 svmmulticlass.m
字号:
function [xsup,w,b,nbsv,pos,alpha]=svmmulticlass(x,y,nbclass,C,epsilon,kernel,kerneloption,verbose, alphainit)% USAGE %[xsup,w,b,nbsv,pos,alpha]=svmmulticlass(x,y,nbclas,C,epsilon,kernel,kerneloption,verbose, alphainit)%% Support vector machine for multiclass CLASSIFICATION% This routine classify the training set with a support vector machine% using quadratic programming algorithm (active constraints method)%% INPUT%% Training set% x : input data % y : output data% parameters% c : Bound on the lagrangian multipliers % lambda : Conditioning parameter for QP method% kernel : kernel type. classical kernel are%% Name parameters% 'poly' polynomial degree% 'gaussian' gaussian standard deviation
%
% for more details see svmkernel% % kerneloption : parameters of kernel
%
% for more details see svmkernel%% verbose : display outputs (default value is 0: no display)%
% alphainit : initialization vector of QP problem%% OUTPUT%% xsup coordinates of the Support Vector% w weight% b bias% pos position of Support Vector% alpha Lagragian multiplier%%% see also svmreg, svmkernel, svmval% 06/01/2003 Alain Rakotomamonjy%% scanu@insa-rouen.fr, alain.rakoto@insa-rouen.frif nargin< 7 alphainit=[];end;if nargin < 6 verbose = 0;endif nargin < 5 kerneloption = 1;endif nargin < 4 kernel = 'gaussian';endif nargin < 3 lambda = 0.000000001;endif nargin < 2 C = 100000;end%------------------------------------------------------% initialisation%-------------------------------------------------------[y,ind]=sort(y);x=x(ind,:);yextended=repmat(y,nbclass,1);xextended=repmat(x,nbclass,1);ell=size(x,1);n=sum(y==1);if size(C,1)==1 C=C*ones(size(y));end;%------------------------------------------------------% construction des matrices associ
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -