📄 fun_std.m
字号:
function [f, g] = fun_std(x, baseMVA, bus, gen, gencost, branch, Ybus, Yf, Yt, V, ref, pv, pq, mpopt)%FUN_STD Evaluates objective function & constraints for OPF.% [f, g] = fun_std(x, baseMVA, bus, gen, gencost, branch, Ybus, Yf, Yt, V, ref, pv, pq, mpopt)% MATPOWER% $Id: fun_std.m,v 1.6 2004/09/08 12:37:36 ray Exp $% by Ray Zimmerman, PSERC Cornell% Copyright (c) 1996-2004 by Power System Engineering Research Center (PSERC)% See http://www.pserc.cornell.edu/matpower/ for more info.%%----- initialize -----%% define named indices into gen, branch matrices[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ... VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;[GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, ... GEN_STATUS, PMAX, PMIN, MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN] = idx_gen;[F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, ... RATE_C, TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST] = idx_brch;[PW_LINEAR, POLYNOMIAL, MODEL, STARTUP, SHUTDOWN, N, COST] = idx_cost;%% constantj = sqrt(-1);%% generator infoon = find(gen(:, GEN_STATUS) > 0); %% which generators are on?%% sizes of thingsnb = size(bus, 1);nl = size(branch, 1);npv = length(pv);npq = length(pq);ng = length(on); %% number of generators that are turned on%% set up indexing for xj1 = 1; j2 = npv; %% j1:j2 - V angle of pv busesj3 = j2 + 1; j4 = j2 + npq; %% j3:j4 - V angle of pq busesj5 = j4 + 1; j6 = j4 + nb; %% j5:j6 - V mag of all busesj7 = j6 + 1; j8 = j6 + ng; %% j7:j8 - P of generatorsj9 = j8 + 1; j10 = j8 + ng; %% j9:j10 - Q of generators%% grab Pg & QgPg = x(j7:j8); %% active generation in p.u.Qg = x(j9:j10); %% reactive generation in p.u.%%----- evaluate objective function -----%% put Pg & Qg back in gengen(on, PG) = Pg * baseMVA; %% active generation in MWgen(on, QG) = Qg * baseMVA; %% reactive generation in MVAr%% compute objective value[pcost, qcost] = pqcost(gencost, size(gen, 1), on);f = sum( [totcost(pcost, gen(on, PG)); ... %% cost of Pg totcost(qcost, gen(on, QG)) ] ); %% cost of Qg, empty if no qcost%%----- evaluate constraints -----if nargout > 1 %% reconstruct V Va = zeros(nb, 1); Va([ref; pv; pq]) = [angle(V(ref)); x(j1:j2); x(j3:j4)]; Vm = x(j5:j6); V = Vm .* exp(j * Va); %% rebuild Sbus Sbus = makeSbus(baseMVA, bus, gen); %% net injected power in p.u. %% evaluate power flow equations mis = V .* conj(Ybus * V) - Sbus; %% compute branch power flows br = find(branch(:, BR_STATUS)); Sf = V(branch(br, F_BUS)) .* conj(Yf(br, :) * V); %% complex power injected at "from" bus (p.u.) St = V(branch(br, T_BUS)) .* conj(Yt(br, :) * V); %% complex power injected at "to" bus (p.u.) %% compute line flow constraints if mpopt(24) == 1 %% branch active power limits flow_limit = [ real(Sf) - branch(br, RATE_A) / baseMVA; %% from bus real(St) - branch(br, RATE_A) / baseMVA; %% to bus ]; else %% branch apparent power limits flow_limit = [ abs(Sf) - branch(br, RATE_A) / baseMVA; %% from bus abs(St) - branch(br, RATE_A) / baseMVA; %% to bus ]; end %% compute constraint function values g = [ %% equality constraints real(mis); %% active power mismatch for all buses imag(mis); %% reactive power mismatch for all buses %% inequality constraints (variable limits, voltage & generation) bus(:, VMIN) - Vm; %% lower voltage limit for var V Vm - bus(:, VMAX); %% upper voltage limit for var V gen(on, PMIN) / baseMVA - Pg; %% lower generator P limit Pg - gen(on, PMAX) / baseMVA; %% upper generator P limit gen(on, QMIN) / baseMVA - Qg; %% lower generator Q limit Qg - gen(on, QMAX) / baseMVA; %% upper generator Q limit %% inequality constraints (line flow limits) flow_limit; ];endreturn;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -