📄 mrbrick.c
字号:
/*
* Module to implement Brickell et al's method for fast
* computation of g^x mod n, for fixed g and n, using precomputation.
* This idea can be used to substantially speed up certain phases
* of the Digital Signature Standard (DSS) for example.
*
* See "Fast Exponentiation with Precomputation"
* by E. Brickell et al. in Proceedings Eurocrypt 1992
*
* Copyright (c) 1988-1998 Shamus Software Ltd.
*/
#include <stdlib.h>
#include "miracl.h"
#ifndef MR_STATIC
BOOL brick_init(_MIPD_ brick *b,big g,big n,int nb)
{ /* Uses Montgomery arithmetic internally *
* g is the fixed base for exponentiation *
* n is the fixed modulus *
* nb is the maximum number of bits in the exponent */
int i,base,best,store,time;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (nb<2 || mr_mip->ERNUM) return FALSE;
MR_IN(109)
best=0;
for (i=1,base=2;;base*=2,i++)
{ /* try to find best base as power of 2 */
store=nb/i+1;
time=store+base-3; /* no floating point! */
if (best==0 || time<best) best=time;
else break;
}
b->base=base;
b->store=store;
b->table=mr_alloc(_MIPP_ store,sizeof(big));
if (b->table==NULL)
{
mr_berror(_MIPP_ MR_ERR_OUT_OF_MEMORY);
MR_OUT
return FALSE;
}
b->n=mirvar(_MIPP_ 0);
copy(n,b->n);
prepare_monty(_MIPP_ n);
b->table[0]=mirvar(_MIPP_ 0);
nres(_MIPP_ g,b->table[0]);
for (i=1;i<store;i++)
{ /* calculate look-up table */
b->table[i]=mirvar(_MIPP_ 0);
convert(_MIPP_ base,mr_mip->w1);
nres_powmod(_MIPP_ b->table[i-1],mr_mip->w1,b->table[i]);
}
MR_OUT
return TRUE;
}
void brick_end(brick *b)
{
int i;
for (i=0;i<b->store;i++)
mirkill(b->table[i]);
mirkill(b->n);
mr_free(b->table);
}
#endif
/* in STATIC mode it is assumed that the precomputed table is of fixed and known size, defined here */
#define MR_B_STORE 100
void pow_brick(_MIPD_ brick *b,big e,big w)
{
int i,ndig,d;
#ifdef MR_STATIC
int digits[MR_B_STORE];
#else
int *digits;
#endif
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (size(e)<0) mr_berror(_MIPP_ MR_ERR_NEG_POWER);
MR_IN(110)
#ifndef MR_STATIC
digits=mr_alloc(_MIPP_ b->store,sizeof(int));
if (digits==NULL)
{
mr_berror(_MIPP_ MR_ERR_OUT_OF_MEMORY);
MR_OUT
return;
}
#endif
prepare_monty(_MIPP_ b->n);
copy(e,w);
for (ndig=0;size(w)>0;ndig++)
{ /* break up exponent into digits, using 'base' */
/* (note base is a power of 2.) This is fast. */
if (ndig>=b->store)
{
#ifndef MR_STATIC
mr_free(digits);
#endif
mr_berror(_MIPP_ MR_ERR_EXP_TOO_BIG);
MR_OUT
return;
}
digits[ndig]=subdiv(_MIPP_ w,b->base,w);
}
convert(_MIPP_ 1,mr_mip->w1);
nres(_MIPP_ mr_mip->w1,mr_mip->w1);
convert(_MIPP_ 1,w);
nres(_MIPP_ w,w);
for (d=b->base-1;d>0;d--)
{ /* brickell's method */
for (i=0;i<ndig;i++)
{
if (mr_mip->user!=NULL) (*mr_mip->user)();
if (digits[i]==d) nres_modmult(_MIPP_ mr_mip->w1,b->table[i],mr_mip->w1);
}
nres_modmult(_MIPP_ w,mr_mip->w1,w);
}
redc(_MIPP_ w,w);
for (i=0;i<ndig;i++) digits[i]=0;
#ifndef MR_STATIC
mr_free(digits);
#endif
MR_OUT
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -