📄 mrcomba2.tpl
字号:
/*
* MIRACL Comba's method for ultimate speed binary polynomial
* mrcomba2.tpl
*
* Here the inner loops of the basic multiplication, and squaring
* algorithms are completely unravelled, and reorganised for maximum possible speed.
*
* This approach is recommended for maximum speed where parameters
* are fixed and compute resources are constrained. The processor MUST
* support a special binary polynomial multiplication instruction
*
* This file is a template. To fill in the gaps and create mrcomba2.c,
* you must run the mex.c program to insert the C or assembly language
* macros from the appropriate .mcs file.
*
* This method would appear to be particularly useful for implementing
* fast Elliptic Curve Cryptosystems over GF(2^m)
*
* The #define MR_COMBA2 in mirdef.h determines the FIXED size of
* modulus to be used. This *must* be determined at compile time.
*
* Note that this module can generate a *lot* of code for large values
* of MR_COMBA2. This should have a maximum value of 8-16.
*
* Note that on some processors it is *VITAL* that arrays be aligned on
* 4-byte boundaries
*
* Copyright (c) 2006 Shamus Software Ltd.
*/
#include "miracl.h"
#ifdef MR_COMBA2
/* NOTE! z must be distinct from x and y */
void comba_mult2(_MIPD_ big x,big y,big z)
{ /* comba multiplier */
int i;
mr_small *a,*b,*c;
big w;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
w=mr_mip->w0;
for (i=2*MR_COMBA2;i<(int)(w->len&MR_OBITS);i++) w->w[i]=0;
w->len=2*MR_COMBA2;
a=x->w; b=y->w; c=w->w;
/*** MULTIPLY2 ***/ /* multiply a by b, result in c */
mr_lzero(w);
if (w!=z) copy (w,z);
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -