📄 zzn4.cpp
字号:
/*
* MIRACL C++ Implementation file zzn4.cpp
*
* AUTHOR : M. Scott
*
* PURPOSE : Implementation of class ZZn4 (Arithmetic over n^4)
*
* WARNING: This class has been cobbled together for a specific use with
* the MIRACL library. It is not complete, and may not work in other
* applications
*
* Note: This code assumes that -2 is a Quadratic Non-Residue,
* so modulus p=5 mod 8
* OR p=3 mod 8
* OR p=7 mod 8, p=1 mod 3
*
* For example for p=3 mod 8 the representation is
*
* A+IB, where A=(a+ib), B=(c+id), I=sqrt(1+i)
* where i=sqrt(-1)
*
* Copyright (c) 2004 Shamus Software Ltd.
*/
#include "zzn4.h"
using namespace std;
ZZn4& ZZn4::powq(const Big& Fr,const Big &s)
{ // Fr is precalculated "Frobenius root"
ZZn2 m;
a.conj(); b.conj();
switch (get_mip()->pmod8)
{
case 5:
m=(ZZn2)Fr; // multiply by (-2)^(p-1)/4
// = (sqrt(-2)^(p-1)/2
break;
case 3:
m.set(Fr,Fr); // multiply by [(-4)^(p-3)/8,(-4)^(p-3)/8]
// = (1+sqrt(-1))^(p-1)/2
break;
case 7:
m.set(Fr,s); // This one is more complex and comes in two halves...
break; // = (1+sqrt(-2))^(p-1)/2
default: break;
}
b*=m;
return *this;
}
void ZZn4::get(ZZn2& x,ZZn2& y)
{x=a; y=b;}
void ZZn4::get(ZZn2& x)
{x=a; }
ZZn4& ZZn4::operator*=(const ZZn4& x)
{ // optimized to reduce constructor/destructor calls
if (&x==this)
{
ZZn2 t=a;
ZZn2 w=b;
a*=a;
w*=w;
a+=txx(w);
b*=t;
b+=b;
}
else
{
ZZn2 ac=a; ac*=x.a;
ZZn2 bd=b; bd*=x.b;
ZZn2 t=x.a; t+=x.b;
b+=a; b*=t; b-=ac; b-=bd;
a=ac; a+=txx(bd);
}
return *this;
}
ZZn4& ZZn4::operator/=(const ZZn2& x)
{
*this*=inverse(x);
return *this;
}
ZZn4& ZZn4::operator/=(const ZZn& x)
{
ZZn t=(ZZn)1/x;
a*=t;
b*=t;
return *this;
}
ZZn4& ZZn4::operator/=(int i)
{
ZZn t=(ZZn)1/i;
a*=t;
b*=t;
return *this;
}
ZZn4& ZZn4::operator/=(const ZZn4& x)
{
*this*=inverse(x);
return *this;
}
ZZn4 inverse(const ZZn4& w)
{
ZZn4 y=conj(w);
ZZn2 u=w.a;
ZZn2 v=w.b;
u*=u;
v*=v;
u-=txx(v);
u=inverse(u);
y*=u;
return y;
}
ZZn4 operator+(const ZZn4& x,const ZZn4& y)
{ZZn4 w=x; w.a+=y.a; w.b+=y.b; return w; }
ZZn4 operator+(const ZZn4& x,const ZZn2& y)
{ZZn4 w=x; w.a+=y; return w; }
ZZn4 operator+(const ZZn4& x,const ZZn& y)
{ZZn4 w=x; w.a+=y; return w; }
ZZn4 operator-(const ZZn4& x,const ZZn4& y)
{ZZn4 w=x; w.a-=y.a; w.b-=y.b; return w; }
ZZn4 operator-(const ZZn4& x,const ZZn2& y)
{ZZn4 w=x; w.a-=y; return w; }
ZZn4 operator-(const ZZn4& x,const ZZn& y)
{ZZn4 w=x; w.a-=y; return w; }
ZZn4 operator-(const ZZn4& x)
{ZZn4 w; w.a=-x.a; w.b=-x.b; return w; }
ZZn4 operator*(const ZZn4& x,const ZZn4& y)
{
ZZn4 w=x;
if (&x==&y) w*=w;
else w*=y;
return w;
}
ZZn4 operator*(const ZZn4& x,const ZZn2& y)
{ZZn4 w=x; w*=y; return w;}
ZZn4 operator*(const ZZn4& x,const ZZn& y)
{ZZn4 w=x; w*=y; return w;}
ZZn4 operator*(const ZZn2& y,const ZZn4& x)
{ZZn4 w=x; w*=y; return w;}
ZZn4 operator*(const ZZn& y,const ZZn4& x)
{ZZn4 w=x; w*=y; return w;}
ZZn4 operator*(const ZZn4& x,int y)
{ZZn4 w=x; w*=y; return w;}
ZZn4 operator*(int y,const ZZn4& x)
{ZZn4 w=x; w*=y; return w;}
ZZn4 operator/(const ZZn4& x,const ZZn4& y)
{ZZn4 w=x; w/=y; return w;}
ZZn4 operator/(const ZZn4& x,const ZZn2& y)
{ZZn4 w=x; w/=y; return w;}
ZZn4 operator/(const ZZn4& x,const ZZn& y)
{ZZn4 w=x; w/=y; return w;}
ZZn4 operator/(const ZZn4& x,int i)
{ZZn4 w=x; w/=i; return w;}
ZZn4 randn4(void)
{ZZn4 w; w.a=randn2(); w.b=randn2(); return w;}
BOOL is_on_curve(const ZZn4& x)
{
ZZn4 s,w;
BOOL twist=get_mip()->TWIST;
if (twist)
{
ZZn4 a4,b6;
ZZn2 xx((ZZn)0,getA());
ZZn2 y((ZZn)0,getB());
a4.set(xx,(ZZn2)0); // A*i^4
b6.set((ZZn2)0,y); // B*i^6
w=x*x*x+a4*x+b6;
}
else
{
w=x*x*x+getA()*x+getB();
}
if (qr(w)) return TRUE;
return FALSE;
}
BOOL qr(const ZZn4& x)
{
ZZn2 a,s;
if (x.iszero()) return TRUE;
if (x.b.iszero()) return TRUE;
s=x.b; s*=s;
a=x.a; a*=a; a-=txx(s);
if (!qr(a)) return FALSE;
s=sqrt(a);
if (qr((x.a+s)/2) || qr((x.a-s)/2)) return TRUE;
return FALSE;
}
ZZn4 sqrt(const ZZn4& x)
{
// sqrt(a+xb) = sqrt((a+sqrt(a*a-n*b*b))/2)+x.b/(2*sqrt((a+sqrt(a*a-n*b*b))/2))
// sqrt(a) = x.sqrt(a/n)
// where x*x=n
ZZn4 w;
ZZn2 a,s,t;
if (x.iszero()) return w;
if (x.b.iszero())
{
if (qr(x.a))
{
s=sqrt(x.a);
w.a=s; w.b=0;
}
else
{
s=sqrt(txd(x.a));
w.a=0; w.b=s;
}
return w;
}
s=x.b; s*=s;
a=x.a; a*=a; a-=txx(s);
s=sqrt(a);
if (s.iszero()) return w;
if (qr((x.a+s)/2))
{
a=sqrt((x.a+s)/2);
}
else
{
a=sqrt((x.a-s)/2);
if (a.iszero()) return w;
}
w.a=a;
w.b=x.b/(2*a);
return w;
}
ZZn4 conj(const ZZn4& x)
{
ZZn4 u=x;
u.conj();
return u;
}
// For use by ZZn8
ZZn4 tx(const ZZn4& x)
{
ZZn2 t=txx(x.b);
ZZn4 u(t,x.a);
return u;
}
ZZn4 txd(const ZZn4& x)
{
ZZn2 t=txd(x.a);
ZZn4 u(x.b,t);
return u;
}
// regular ZZn4 powering - but see powl function in zzn2.h
ZZn4 pow(const ZZn4& x,const Big& k)
{
int i,j,nb,n,nbw,nzs;
ZZn4 u,u2,t[16];
if (k==0) return (ZZn4)1;
u=x;
if (k==1) return u;
//
// Prepare table for windowing
//
u2=(u*u);
t[0]=u;
for (i=1;i<16;i++)
t[i]=u2*t[i-1];
// Left to right method - with windows
nb=bits(k);
if (nb>1) for (i=nb-2;i>=0;)
{
n=window(k,i,&nbw,&nzs);
for (j=0;j<nbw;j++) u*=u;
if (n>0) u*=t[n/2];
i-=nbw;
if (nzs)
{
for (j=0;j<nzs;j++) u*=u;
i-=nzs;
}
}
return u;
}
// standard MIRACL multi-exponentiation
ZZn4 pow(int n,const ZZn4* x,const Big* b)
{
int k,j,i,m,nb,ea;
ZZn4 *G;
ZZn4 r;
m=1<<n;
G=new ZZn4[m];
for (i=0,k=1;i<n;i++)
{
for (j=0; j < (1<<i) ;j++)
{
if (j==0) G[k]=x[i];
else G[k]=G[j]*x[i];
k++;
}
}
nb=0;
for (j=0;j<n;j++)
if ((k=bits(b[j]))>nb) nb=k;
r=1;
for (i=nb-1;i>=0;i--)
{
ea=0;
k=1;
for (j=0;j<n;j++)
{
if (bit(b[j],i)) ea+=k;
k<<=1;
}
r*=r;
if (ea!=0) r*=G[ea];
}
delete [] G;
return r;
}
ZZn4 powl(const ZZn4& x,const Big& k)
{
ZZn4 w8,w9,two,y;
int i,nb;
two=(ZZn)2;
y=two*x;
if (k==0) return (ZZn4)two;
if (k==1) return y;
w8=two;
w9=y;
nb=bits(k);
for (i=nb-1;i>=0;i--)
{
if (bit(k,i))
{
w8*=w9; w8-=y; w9*=w9; w9-=two;
}
else
{
w9*=w8; w9-=y; w8*=w8; w8-=two;
}
}
return (w8/2);
}
#ifndef MR_NO_STANDARD_IO
ostream& operator<<(ostream& s,const ZZn4& xx)
{
ZZn4 b=xx;
ZZn2 x,y;
b.get(x,y);
s << "[" << x << "," << y << "]";
return s;
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -