⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 schoof2.cpp

📁 miracl-大数运算库,大家使用有什么问题请多多提意见
💻 CPP
📖 第 1 页 / 共 3 页
字号:
            XX=X;
            YP=MFX;
            XP2=1;

// Find X^P and Y^P together wrt new small modulus

            cout << "Y^P" << flush;

            for (jj=0;jj<M-1;jj++)
            {
                XP2*=XX;
                XP2*=XP2;
                YP*=YP;
                YP+=(XP2*MFX);
            }
            YPy=XP2*XX;
            XP=YPy*XX;
            cout << "\b\b\b";

            cout << "NP mod " << lp << " = " << flush;
            SX=inverse(XX);
            for (jj=0;jj<5;jj++)
            {
                Pf[jj]=(Poly2Mod)P[jj];
                P2f[jj]=(Poly2Mod)P2[jj];
                P3f[jj]=(Poly2Mod)P3[jj];
            }         

// if (lp%2==0) cout << "\n GCD(XX,Fl)= " << gcd(XX) << endl;

            low=5;
            for (lambda=1;lambda<=lp/2;lambda++)
            { // eigenvalue search
                Poly2Mod Tx,Hx,Ax,Bx,Pf3,Pft;
                tau=(lambda+invers(lambda,lp)*p)%lp;

                cout << setw(4) << (p+1-tau)%lp << flush;
                
                for (jj=low;jj<=lambda+2;jj++)
                { 
                    if (jj%2==1)
                    {
                        n=(jj-1)/2;
                        Pf[jj]=Pf[n+2]*P3f[n]+P3f[n+1]*Pf[n-1];
                    }
                    else
                    {
                        n=jj/2;
                        Pf[jj]=SX*Pf[n]*(Pf[n+2]*P2f[n-1]+Pf[n-2]*P2f[n+1]);
                    }
                    P2f[jj]=Pf[jj]*Pf[jj];
                    P3f[jj]=P2f[jj]*Pf[jj];
                }
                if (lambda+3>low) low=lambda+3;

                Pft=Pf[lambda-1]*Pf[lambda+1];

                Tx=(XP+XX)*P2f[lambda]+Pft;

                if (degree(gcd(Tx))!=0)
                { // Got it! Now check Y-coord for correct sign
                    if (lambda==1)
                    {
                        Ax=YP;
                        Bx=YPy+one;
                    }
                    else
                    {
                        Pf3=P3f[lambda];
                        Pft*=Pf[lambda];

                        Ax=XX*Pf3*(YP+XX)+Pf[lambda-2]*P2f[lambda+1]+(XX*XX+XX)*Pft;  
                        Bx=XX*Pf3*(YPy+one)+Pft; 
                    }              

                    Hx=Ax*Ax+XX*Ax*Bx+MFX*(Bx*Bx); // substitue y into curve

                    if (degree(gcd(Hx))==0)
                    { // its the other one
                        tau=(lp-tau)%lp;
                        cout << "\b\b\b\b";
                        cout << setw(4) << (p+1-tau)%lp << flush;
                    }
                    t[i]=tau;
                    if ((p+1-tau)%lp==0)
                    {
                        cout << " ***" << endl;
                        if (search) escape=TRUE;
                    }
                    else cout << endl;
                    break;
                }
                cout << "\b\b\b\b";
            }
            for (jj=0;jj<low;jj++)
            {
                Pf[jj].clear();
                P2f[jj].clear();
                P2f[jj].clear();
            }  
            if (escape) break;
            continue;
        }   

 // no eigenvalue found, but some tau values can be eliminated...       

        if (prime((Big)lp))
        {
            if (degree(Fl)==0) 
            {
                for (tau=0;tau<=lp/2;tau++)
                {
                    jj=(lp+tau*tau-(4*p)%lp)%lp;
                    if (jac(jj,lp)!=(-1)) permisso[tau]=FALSE;
                }
            }
            else
            { // Fl==P[lp] so tau=+/- sqrt(p) mod lp
                jj=(2*sqrmp(p%lp,lp))%lp;
                for (tau=0;tau<=lp/2;tau++) permisso[tau]=FALSE;
                if (jj<=lp/2) permisso[jj]=TRUE;
                else          permisso[lp-jj]=TRUE;
            }
        }
        else
        { // prime power
            for (jj=0;jj<start_prime;jj++)
                if (lp%l[jj]==0)
                {
                    for (tau=0;tau<=lp/2;tau++)
                    {
                        permisso[tau]=FALSE;
                        if (tau%l[jj]==t[jj])      permisso[tau]=TRUE;
                        if ((lp-tau)%l[jj]==t[jj]) permisso[tau]=TRUE;
                    }
                    break;
                }  
        }

// These next are time-consuming calculations of Y^P, X^PP and Y^PP

        cout << "Y^P " << flush;
        YP=MFX;
        for (jj=0;jj<M-1;jj++)
        {
            XP2=XK[jj];     // use values stored during generation of X^P
            XK[jj].clear();
            YP*=YP;
            YP+=(XP2*MFX);
        }
        YPy=XP2*XX;
        cout << "\b\b\b\bX^PP" << flush;

// Composition is faster for smaller lp

        if (lp<40)
        {
            TT=compose(YPy,XP);
            XPP=XP*TT;
            cout << "\b\b\b\bY^PP" << flush;
            YPP=compose(YP,XP)+YP*TT;
            YPPy=TT*YPy;
        }
        else
        { // XPP and YPP are calculated together
            YPP=YP;
            for (jj=0;jj<M;jj++)
            {
                XP2*=XX;
                XP2*=XP2;
                YPP*=YPP;
                YPP+=(XP2*MFX);  
                if (jj==M/2) cout << "\b\b\b\bY^PP" << flush;
            }
            YPPy=XP2*XX;
            XPP=YPPy*XX;
        }
        cout << "\b\b\b\b";

        Poly2Mod Pk,P2k,P3k,PkP1,PkM1,PkP2,Pt;
        Pk=P[k]; PkP1=P[k+1]; PkM1=P[k-1]; PkP2=P[k+2];

//
// This is Schoof's algorithm
//
// Now looking for the value of tau which satisfies 
// (X^PP,Y^PP) + k.(X,Y) =  tau.(X^P,Y^P)
// 
// Note that (X,Y) are rational polynomial expressions for points on
// an elliptic curve, so "+" means elliptic curve point addition
// 
// Note also that Y is of the form A(x)+B(x).y. After the addition
// the X coordinate of the sum will also be of this form.
//
// k.(X,Y) can be found directly from Divisor polynomials
// Schoof Prop (2.2)
//
// Points are converted to projective (X,Y,Z) form
// Observe that (X/Z^2,Y/Z^3,1) is the same
// point in projective co-ordinates as (X,Y,Z)
//

        if (k==1)
        { // easy case
            XT=XX;
            YT=0;
            YTy=one;
            ZT=one;
        }
        else
        {
            P2k=Pk*Pk;
            P3k=P2k*Pk;
            Pt=PkP1*PkM1;
            X2=XX*XX;
            XT=X2*(XX*P2k+Pt);
            Pt*=Pk;
            YT=X2*(X2*P3k+P[k-2]*PkP1*PkP1+(X2+XX)*Pt);
            YTy=X2*(XX*P3k+Pt);  
            ZT=XX*Pk;
        }

        elliptic_add(XT,XTy,YT,YTy,ZT,XPP,YPP,YPPy);
// 
// Test for Schoof's case 1 - LHS (XT,YT,ZT) is point at infinity
//

        cout << "NP mod " << lp << " = " << flush;
        if (iszero(ZT))
        { // Is it zero point? (XPP,YPP) = - K(X,Y)
            t[i]=0;
            cout << setw(4) << (p+1)%lp;
            if ((p+1)%lp==0)
            {      
                cout << " ***" << endl;
                if (search) {escape=TRUE; break;}
            }
            else cout << endl;
            continue;         
        }

        Poly2Mod XP3,XP4,XP6;
        Poly2Mod ZT2,ZT3,ZT2XP;

        ZT2=ZT*ZT;
        ZT3=ZT2*ZT;
        ZT2XP=XP*ZT2;
        XP2=XP*XP;
        XP3=XP*XP2;
        XP4=XP2*XP2;
        XP6=XP3*XP3;

        SX=inverse(XP);   // we need 1/XP mod Fl

        Pf[0]=0; Pf[1]=1; Pf[2]=XP;
        P2f[1]=1; P3f[1]=1;
        P2f[2]=Pf[2]*Pf[2];
        P3f[2]=P2f[2]*Pf[2];

        Pf[3]=XP4+XP3+B;
        P2f[3]=Pf[3]*Pf[3];
        P3f[3]=P2f[3]*Pf[3];

        Pf[4]=XP6+B*XP2;
        P2f[4]=Pf[4]*Pf[4];
        P3f[4]=P2f[4]*Pf[4];
         
        low=5;

        for (tau=1;tau<=lp/2;tau++)
        {
            int res=0;
            Poly2Mod Hx,Ax,Bx,Rx,Tx,Ry,Ty,Pt;
            if (!permisso[tau]) continue;

            cout << setw(4) << (p+1-tau)%lp << flush;     

            for (jj=low;jj<=tau+2;jj++)
            { // different for odd and even
                if (jj%2==1)
                { // 2 mod-muls/
                    n=(jj-1)/2;
                    Pf[jj]=Pf[n+2]*P3f[n]+P3f[n+1]*Pf[n-1];
                }
                else
                { // 4 mod-muls
                    n=jj/2;
                    Pf[jj]=SX*Pf[n]*(Pf[n+2]*P2f[n-1]+Pf[n-2]*P2f[n+1]);
                }
                P2f[jj]=Pf[jj]*Pf[jj];    // square
                if (jj<=1+(1+(lp/2))/2) P3f[jj]=P2f[jj]*Pf[jj];   // cube
            } 
            if (tau+3>low) low=tau+3;

            if (tau==1)
            { // easy case
                Ax=ZT2XP+XT;
                Bx=XTy;
            }
            else
            {
                Pt=Pf[tau-1]*Pf[tau+1];
                Ax=ZT2*(XP*P2f[tau]+Pt)+P2f[tau]*XT;
                Bx=P2f[tau]*XTy;
            }
               
            Hx=Ax*Ax+XX*Ax*Bx+MFX*(Bx*Bx);

            if (iszero(Hx))   // NOTE: GCD not needed
            { // found it. Now compare Y coordinates to determine sign

                if (tau==1)
                {
                    Ax=YT+ZT3*YP;
                    Bx=YTy+ZT3*YPy;
                }
                else
                {
                    Tx=XP*P2f[tau]*Pf[tau];
                    Pt*=Pf[tau];
                    Ax=YT*Tx+ZT3*(Tx*(XP+YP)+(XP2+XP+YP)*Pt+Pf[tau-2]*P2f[tau+1]);
                    Bx=YTy*Tx+ZT3*YPy*(Tx+Pt);                                                                
                }

                Hx=Ax*Ax+XX*Ax*Bx+MFX*(Bx*Bx);  // substitute into curve
                if (!iszero(Hx))
                { // its the other one
                    tau=(lp-tau)%lp;
                    cout << "\b\b\b\b";
                    cout << setw(4) << (p+1-tau)%lp << flush;
                }
                t[i]=tau;
                if ((p+1-tau)%lp==0)
                {
                    cout << " ***" << endl;
                    if (search) escape=TRUE;
                }
                else cout << endl;
                break;
            }
            cout << "\b\b\b\b";
        }

        for (jj=0;jj<low;jj++)
        {
            Pf[jj].clear();
            P2f[jj].clear();
            P3f[jj].clear();
        }
        if (escape) break;
    }
    Modulus.clear();

    for (i=0;i<=L+1;i++) 
    {
        P[i].clear(); // reclaim space
        P2[i].clear();
        P3[i].clear();
    }

    if (escape) {bb+=1; continue;}
    Big order,ordermod;
    ordermod=1; for (i=0;i<nl-start_prime;i++) ordermod*=l[start_prime+i];
    order=(p+1-CRT.eval(&t[start_prime]))%ordermod;    // get order mod product of primes

    nrp=kangaroo(p,order,ordermod,TR,found);

    if (!found && search) {bb+=1; continue; }
    else break;

    }

    if (fout) 
    {
        cf=1;      // set co-factor=1
        if (found)
        { // An "ideal" curve was found 
            if (TR==1)
            {
                nrp/=2;
                cf=2;
            }
            else
            {
                nrp/=4;
                cf=4;
            }
        }

    // generate a random point on the curve 
    // point will be of prime order for "ideal" curve, otherwise any point
        forever
        {
            EC2 P;
            do {
                x=rand(p);
            } while (!GG.set(x,x));
            if (!found) break;
            P=GG;
            
            P*=(Big)cf;
            if (P.iszero()) continue;
            P=GG;
            P*=nrp;
            if (!P.iszero()) continue;
            break;
        }

        GG.get(x,y);
        ofile << M << endl;
        mip->IOBASE=16;
        ofile << aa << endl;
        ofile << bb << endl;
        ofile << nrp << endl;
        ofile << x << endl;
        ofile << y << endl;
        mip->IOBASE=10;
        ofile << a << endl;
        ofile << b << endl;
        ofile << c << endl;
    }

    if (p==nrp) 
    {
        cout << "WARNING: Curve is anomalous" << endl;
        return 0;
    }

// check MOV condition for curves of Cryptographic interest
//    if (M<128) return 0;

    nrp/=2;
    if (nrp%2==0) nrp/=2;
    
    d=1;
    for (i=0;i<50;i++)
    {
        d=modmult(d,p,nrp);
        if (d==1) 
        {
           if (i==1 || prime(nrp))   cout << "WARNING: Curve fails MOV condition, k= " << i << endl;
           else                      cout << "WARNING: Curve fails MOV condition, k<= " << i << endl;
           return 0;
        }
    }

    return 0;
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -