📄 mrcore.c
字号:
/*
* MIRACL Core module - contains initialisation code and general purpose
* utilities
* mrcore.c
*
* Copyright (c) 1988-2005 Shamus Software Ltd.
*/
#include "miracl.h"
#include <stdlib.h>
#include <string.h>
/*** Multi-Threaded Support ***/
#ifndef MR_GENERIC_MT
#ifdef MR_WINDOWS_MT
#include <windows.h>
DWORD mr_key;
miracl *get_mip()
{
return (miracl *)TlsGetValue(mr_key);
}
void mr_init_threading()
{
mr_key=TlsAlloc();
}
void mr_end_threading()
{
TlsFree(mr_key);
}
#endif
#ifdef MR_UNIX_MT
#include <pthread.h>
pthread_key_t mr_key;
miracl *get_mip()
{
return (miracl *)pthread_getspecific(mr_key);
}
void mr_init_threading()
{
pthread_key_create(&mr_key,(void(*)(void *))NULL);
}
void mr_end_threading()
{
pthread_key_delete(mr_key);
}
#endif
#ifndef MR_WINDOWS_MT
#ifndef MR_UNIX_MT
#ifdef MR_STATIC
miracl mip;
miracl *mr_mip=&mip;
#else
miracl *mr_mip=NULL; /* MIRACL's one and only global variable */
#endif
miracl *get_mip()
{
return (miracl *)mr_mip;
}
#endif
#endif
#endif
/* See Advanced Windows by Jeffrey Richter, Chapter 12 for methods for
creating different instances of this global for each executing thread
when using Windows '95/NT
*/
#ifdef MR_STATIC
static const int mr_small_primes[]=
{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,
107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,
223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,
337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,
457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,
593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,
719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,
857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,
997,0};
#endif
#ifndef MR_STRIPPED_DOWN
#ifndef MR_NO_STANDARD_IO
static char *names[] =
{"your program","innum","otnum","jack","normalise",
"multiply","divide","incr","decr","premult",
"subdiv","fdsize","egcd","cbase",
"cinnum","cotnum","nroot","power",
"powmod","bigdig","bigrand","nxprime","isprime",
"mirvar","mad","multi_inverse","putdig",
"add","subtract","mirsys","xgcd",
"fpack","dconv","mr_shift","mround","fmul",
"fdiv","fadd","fsub","fcomp","fconv",
"frecip","fpmul","fincr","","ftrunc",
"frand","sftbit","build","logb2","expint",
"fpower","froot","fpi","fexp","flog","fpowf",
"ftan","fatan","fsin","fasin","fcos","facos",
"ftanh","fatanh","fsinh","fasinh","fcosh",
"facosh","flop","gprime","powltr","fft_mult",
"crt_init","crt","otstr","instr","cotstr","cinstr","powmod2",
"prepare_monty","nres","redc","nres_modmult","nres_powmod",
"nres_moddiv","nres_powltr","divisible","remain",
"fmodulo","nres_modadd","nres_modsub","nres_negate",
"ecurve_init","ecurve_add","ecurve_mult",
"epoint_init","epoint_set","epoint_get","nres_powmod2",
"nres_sqroot","sqroot","nres_premult","ecurve_mult2",
"ecurve_sub","trial_division","nxsafeprime","nres_lucas","lucas",
"brick_init","pow_brick","set_user_function",
"nres_powmodn","powmodn","ecurve_multn",
"ebrick_init","mul_brick","epoint_norm","nres_multi_inverse","",
"nres_dotprod","epoint_negate","ecurve_multi_add",
"ecurve2_init","","epoint2_set","epoint2_norm","epoint2_get",
"epoint2_comp","ecurve2_add","epoint2_negate","ecurve2_sub",
"ecurve2_multi_add","ecurve2_mult","ecurve2_multn","ecurve2_mult2",
"ebrick2_init","mul2_brick","prepare_basis","strong_bigrand",
"bytes_to_big","big_to_bytes","set_io_buffer_size",
"epoint_getxyz","epoint_double_add","nres_double_inverse",
"double_inverse","epoint_x","hamming","expb2","bigbits"};
/* 0 - 150 (151 in all) */
#endif
#endif
#ifdef MR_NOASM
/* C only versions of muldiv/muldvd/muldvd2/muldvm */
/* Note that mr_large should be twice the size of mr_small */
mr_small muldiv(mr_small a,mr_small b,mr_small c,mr_small m,mr_small *rp)
{
mr_small q;
mr_large ldres,p=(mr_large)a*b+c;
q=(mr_small)(MR_LROUND(p/m));
*rp=(mr_small)(p-(mr_large)q*m);
return q;
}
#ifdef MR_FP_ROUNDING
mr_small imuldiv(mr_small a,mr_small b,mr_small c,mr_small m,mr_large im,mr_small *rp)
{
mr_small q;
mr_large ldres,p=(mr_large)a*b+c;
q=(mr_small)MR_LROUND(p*im);
*rp=(mr_small)(p-(mr_large)q*m);
return q;
}
#endif
#ifndef MR_NOFULLWIDTH
mr_small muldvm(mr_small a,mr_small c,mr_small m,mr_small *rp)
{
mr_small q;
union doubleword dble;
dble.h[MR_BOT]=c;
dble.h[MR_TOP]=a;
q=(mr_small)(dble.d/m);
*rp=(mr_small)(dble.d-(mr_large)q*m);
return q;
}
mr_small muldvd(mr_small a,mr_small b,mr_small c,mr_small *rp)
{
union doubleword dble;
dble.d=(mr_large)a*b+c;
*rp=dble.h[MR_BOT];
return dble.h[MR_TOP];
}
void muldvd2(mr_small a,mr_small b,mr_small *c,mr_small *rp)
{
union doubleword dble;
dble.d=(mr_large)a*b+*c+*rp;
*rp=dble.h[MR_BOT];
*c=dble.h[MR_TOP];
}
#endif
#endif
#ifdef MR_NOFULLWIDTH
/* no FULLWIDTH working, so supply dummies */
/*
mr_small muldvd(mr_small a,mr_small b,mr_small c,mr_small *rp)
{
return (mr_small)0;
}
mr_small muldvm(mr_small a,mr_small c,mr_small m,mr_small *rp)
{
return (mr_small)0;
}
void muldvd2(mr_small a,mr_small b,mr_small *c,mr_small *rp)
{
}
*/
#endif
#ifndef MR_NO_STANDARD_IO
static void mputs(char *s)
{ /* output a string */
int i=0;
while (s[i]!=0) fputc((int)s[i++],stdout);
}
#endif
void mr_berror(_MIPD_ int nerr)
{ /* Big number error routine */
#ifndef MR_STRIPPED_DOWN
int i;
#endif
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->ERCON)
{
mr_mip->ERNUM=nerr;
return;
}
#ifndef MR_NO_STANDARD_IO
#ifndef MR_STRIPPED_DOWN
mputs("\nMIRACL error from routine ");
if (mr_mip->depth<MR_MAXDEPTH) mputs(names[mr_mip->trace[mr_mip->depth]]);
else mputs("???");
fputc('\n',stdout);
for (i=mr_mip->depth-1;i>=0;i--)
{
mputs(" called from ");
if (i<MR_MAXDEPTH) mputs(names[mr_mip->trace[i]]);
else mputs("???");
fputc('\n',stdout);
}
switch (nerr)
{
case 1 :
mputs("Number base too big for representation\n");
break;
case 2 :
mputs("Division by zero attempted\n");
break;
case 3 :
mputs("Overflow - Number too big\n");
break;
case 4 :
mputs("Internal result is negative\n");
break;
case 5 :
mputs("Input format error\n");
break;
case 6 :
mputs("Illegal number base\n");
break;
case 7 :
mputs("Illegal parameter usage\n");
break;
case 8 :
mputs("Out of space\n");
break;
case 9 :
mputs("Even root of a negative number\n");
break;
case 10:
mputs("Raising integer to negative power\n");
break;
case 11:
mputs("Attempt to take illegal root\n");
break;
case 12:
mputs("Integer operation attempted on Flash number\n");
break;
case 13:
mputs("Flash overflow\n");
break;
case 14:
mputs("Numbers too big\n");
break;
case 15:
mputs("Log of a non-positive number\n");
break;
case 16:
mputs("Flash to double conversion failure\n");
break;
case 17:
mputs("I/O buffer overflow\n");
break;
case 18:
mputs("MIRACL not initialised - no call to mirsys()\n");
break;
case 19:
mputs("Illegal modulus \n");
break;
case 20:
mputs("No modulus defined\n");
break;
case 21:
mputs("Exponent too big\n");
break;
case 22:
mputs("Unsupported Feature - check mirdef.h\n");
break;
case 23:
mputs("Specified double length type isn't double length\n");
break;
case 24:
mputs("Specified basis is NOT irreducible\n");
break;
case 25:
mputs("Unable to control Floating-point rounding\n");
break;
case 26:
mputs("Base must be binary (MR_ALWAYS_BINARY defined in mirdef.h ?)\n");
break;
case 27:
mputs("No irreducible basis defined\n");
break;
case 28:
mputs("Composite modulus\n");
break;
default:
mputs("Undefined error\n");
break;
}
exit(0);
#else
mputs("MIRACL error\n");
exit(0);
#endif
#endif
}
#ifndef MR_STRIPPED_DOWN
void mr_track(_MIPDO_ )
{ /* track course of program execution *
* through the MIRACL routines */
#ifndef MR_NO_STANDARD_IO
int i;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
for (i=0;i<mr_mip->depth;i++) fputc('-',stdout);
fputc('>',stdout);
mputs(names[mr_mip->trace[mr_mip->depth]]);
fputc('\n',stdout);
#endif
}
#endif
mr_small brand(_MIPDO_ )
{ /* Marsaglia & Zaman random number generator */
int i,k;
mr_unsign32 pdiff,t;
mr_small r;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
if (mr_mip->lg2b>32)
{ /* underlying type is > 32 bits. Assume <= 64 bits */
mr_mip->rndptr+=2;
if (mr_mip->rndptr<NK-1)
{
r=(mr_small)mr_mip->ira[mr_mip->rndptr];
r=mr_shiftbits(r,mr_mip->lg2b-32);
r+=(mr_small)mr_mip->ira[mr_mip->rndptr+1];
return r;
}
}
else
{
mr_mip->rndptr++;
if (mr_mip->rndptr<NK) return (mr_small)mr_mip->ira[mr_mip->rndptr];
}
mr_mip->rndptr=0;
for (i=0,k=NK-NJ;i<NK;i++,k++)
{ /* calculate next NK values */
if (k==NK) k=0;
t=mr_mip->ira[k];
pdiff=t - mr_mip->ira[i] - mr_mip->borrow;
if (pdiff<t) mr_mip->borrow=0;
if (pdiff>t) mr_mip->borrow=1;
mr_mip->ira[i]=pdiff;
}
if (mr_mip->lg2b>32)
{ /* double up */
r=(mr_small)mr_mip->ira[0];
r=mr_shiftbits(r,mr_mip->lg2b-32);
r+=(mr_small)mr_mip->ira[1];
return r;
}
else return (mr_small)(mr_mip->ira[0]);
}
void irand(_MIPD_ mr_unsign32 seed)
{ /* initialise random number system */
int i,in;
mr_unsign32 t,m=1L;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
mr_mip->borrow=0L;
mr_mip->rndptr=0;
mr_mip->ira[0]^=seed;
for (i=1;i<NK;i++)
{ /* fill initialisation vector */
in=(NV*i)%NK;
mr_mip->ira[in]=m;
t=m;
m=seed-m;
seed=t;
}
for (i=0;i<1000;i++) brand(_MIPPO_ ); /* "warm-up" & stir the generator */
}
mr_small mr_shiftbits(mr_small x,int n)
{
#ifdef MR_FP
int i;
mr_small dres;
if (n==0) return x;
if (n>0)
{
for (i=0;i<n;i++) x=x+x;
return x;
}
n=-n;
for (i=0;i<n;i++) x=MR_DIV(x,2.0);
return x;
#else
if (n==0) return x;
if (n>0) x<<=n;
else x>>=n;
return x;
#endif
}
mr_small mr_setbase(_MIPD_ mr_small nb)
{ /* set base. Pack as many digits as *
* possible into each computer word */
mr_small temp;
#ifdef MR_FP
mr_small dres;
#endif
#ifndef MR_NOFULLWIDTH
BOOL fits;
int bits;
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
fits=FALSE;
bits=MIRACL;
while (bits>1)
{
bits/=2;
temp=((mr_small)1<<bits);
if (temp==nb)
{
fits=TRUE;
break;
}
if (temp<nb || (bits%2)!=0) break;
}
if (fits)
{
mr_mip->apbase=nb;
mr_mip->pack=MIRACL/bits;
mr_mip->base=0;
return 0;
}
#endif
mr_mip->apbase=nb;
mr_mip->pack=1;
mr_mip->base=nb;
if (mr_mip->base==0) return 0;
temp=MR_DIV(MAXBASE,nb);
while (temp>=nb)
{
temp=MR_DIV(temp,nb);
mr_mip->base*=nb;
mr_mip->pack++;
}
#ifdef MR_FP_ROUNDING
mr_mip->inverse_base=mr_invert(mr_mip->base);
return mr_mip->inverse_base;
#else
return 0;
#endif
}
#ifdef MR_FLASH
BOOL fit(big x,big y,int f)
{ /* returns TRUE if x/y would fit flash format of length f */
int n,d;
n=(int)(x->len&(MR_OBITS));
d=(int)(y->len&(MR_OBITS));
if (n==1 && x->w[0]==1) n=0;
if (d==1 && y->w[0]==1) d=0;
if (n+d<=f) return TRUE;
return FALSE;
}
#endif
int mr_lent(flash x)
{ /* return length of big or flash in words */
mr_unsign32 lx;
lx=(x->len&(MR_OBITS));
#ifdef MR_FLASH
return (int)((lx&(MR_MSK))+((lx>>(MR_BTS))&(MR_MSK)));
#else
return (int)lx;
#endif
}
void zero(flash x)
{ /* set big/flash number to zero */
int i,n;
mr_small *g;
if (x==NULL) return;
#ifdef MR_FLASH
n=mr_lent(x);
#else
n=(x->len&MR_OBITS);
#endif
g=x->w;
for (i=0;i<n;i++)
g[i]=0;
x->len=0;
}
void convert(_MIPD_ int n ,big x)
{ /* convert integer n to big number format */
int m;
mr_unsign32 s;
#ifdef MR_FP
mr_small dres;
#endif
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
zero(x);
if (n==0) return;
s=0;
if (n<0)
{
s=MR_MSBIT;
n=(-n);
}
m=0;
if (mr_mip->base==0)
{
#ifndef MR_NOFULLWIDTH
#if MR_IBITS > MIRACL
while (n>0)
{
x->w[m++]=(mr_small)(n%((mr_small)1<<(MIRACL)));
n/=((mr_small)1<<(MIRACL));
}
#else
x->w[m++]=(mr_small)n;
#endif
#endif
}
else while (n>0)
{
x->w[m++]=MR_REMAIN((mr_small)n,mr_mip->base);
n/=mr_mip->base;
}
x->len=(m|s);
}
void uconvert(_MIPD_ unsigned int n ,big x)
{ /* convert integer n to big number format */
int m;
#ifdef MR_FP
mr_small dres;
#endif
#ifdef MR_OS_THREADS
miracl *mr_mip=get_mip();
#endif
zero(x);
if (n==0) return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -