📄 cross_validation.py
字号:
#!/usr/bin/env pythonimport randomfrom svm import *def do_cross_validation(prob_x, prob_y, param, nr_fold): "Do cross validation for a given SVM problem." total_correct = 0 total_error = sumv = sumy = sumvv = sumyy = sumvy = 0. prob_l = len(prob_y) for i in range(prob_l): j = random.randrange(i,prob_l); prob_x[i], prob_x[j] = prob_x[j], prob_x[i] prob_y[i], prob_y[j] = prob_y[j], prob_y[i] for i in range(nr_fold): begin = i * prob_l / nr_fold end = (i + 1) * prob_l / nr_fold subprob = svm_problem(prob_y[:begin] + prob_y[end:], prob_x[:begin] + prob_x[end:]) if param.svm_type == EPSILON_SVR or param.svm_type == NU_SVR: submodel = svm_model(subprob, param) error = 0.0 for j in range(begin, end): v = submodel.predict(prob_x[j]) y = prob_y[j] error = error + (v - y) * (v - y) sumv = sumv + v sumy = sumy + y sumvv = sumvv + v * v sumyy = sumyy + y * y sumvy = sumvy + v * y print "Mean squared error = %g" % (error / (end - begin)) total_error = total_error + error else: submodel = svm_model(subprob, param) correct = 0 for j in range(begin, end): v = submodel.predict(prob_x[j]) if v == prob_y[j]: correct = correct + 1 print "Accuracy = %g%% (%d/%d)" % (100.0 * correct / (end - begin), correct, (end - begin)) total_correct = total_correct + correct if param.svm_type == EPSILON_SVR or param.svm_type == NU_SVR: print "Cross Validation Mean squared error = %g" % (total_error / prob_l) print "Cross Validation Squared correlation coefficient = %g" % (((prob_l * sumvy - sumv * sumy) * (prob_l * sumvy - sumv * sumy)) / ((prob_l * sumvv - sumv * sumv) * (prob_l * sumyy - sumy * sumy))) else: print "Cross Validation Accuracy = %g%%" % (100.0 * total_correct / prob_l)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -