📄 rfm_model.c
字号:
model->init = static_init; model->transmit = static_transmit; model->stop_transmit = static_stops_transmit; model->hears = static_hears; model->connected = static_connected; model->neighbors = simple_neighbors; return model;}bool lossy_connected(int moteID1, int moteID2) { // this method is rather slow, and runs on the order of the number // of links attached moteID1 because it traverses moteID1's // adjacency list to make this a constant time operation, add a // hashtable to the adjacency list implementation link_t* current_link; pthread_mutex_lock(&radioConnectivityLock); current_link = radio_connectivity[moteID1]; dbg(DBG_TEMP, "connections for %i\n", moteID1); while (current_link) { if ((current_link->mote == moteID2) && (current_link->data < 1.0)) { dbg(DBG_TEMP, "connected to %i\n", moteID2); pthread_mutex_unlock(&radioConnectivityLock); return TRUE; } current_link = current_link->next_link; } pthread_mutex_unlock(&radioConnectivityLock); return FALSE;}void lossy_transmit(int moteID, char bit) { link_t* current_link; pthread_mutex_lock(&radioConnectivityLock); current_link = radio_connectivity[moteID]; transmitting[moteID] = bit; while (current_link) { int r = rand() % 100000; double prob = ((double)r) / 100000.0; int tmp_bit = bit; if (prob < current_link->data) { // bit error, reverse the bit tmp_bit = (tmp_bit)? 0:1; } radio_active[current_link->mote] += tmp_bit; radio_idle_state[current_link->mote] = 0; current_link->bit = tmp_bit; current_link = current_link->next_link; } pthread_mutex_unlock(&radioConnectivityLock);}void lossy_stop_transmit(int moteID) { link_t* current_link; pthread_mutex_lock(&radioConnectivityLock); current_link = radio_connectivity[moteID]; transmitting[moteID] = 0; while (current_link) { radio_active[current_link->mote] -= current_link->bit; current_link->bit = 0; current_link = current_link->next_link; } pthread_mutex_unlock(&radioConnectivityLock);}char lossy_hears(int moteID) { char bit_heard = (radio_active[moteID] > 0)? 1:0; if (radio_idle_state[moteID]) { int r = rand() % 100000; double prob = ((double)r) / 100000.0; if (prob < noise_prob) { // noise has caused this bit to be reversed bit_heard = (bit_heard)? 0:1; } } else { short temp_heard = radio_heard[moteID]; temp_heard <<= 1; temp_heard |= bit_heard; radio_heard[moteID] = temp_heard; if ((radio_heard[moteID] & IDLE_STATE_MASK) == 0) { radio_idle_state[moteID] = 1; } } return bit_heard;}int read_lossy_entry(FILE* file, int* mote_one, int* mote_two, double* loss) { char buf[128]; int findex = 0; int ch; // Read in first number while(1) { ch = getc(file); if (ch == EOF) {return 0;} else if (ch >= '0' && ch <= '9') { buf[findex] = (char)ch; findex++; } else if (ch == ':') { buf[findex] = 0; break; } else if (ch == '\n' || ch == ' ' || ch == '\t') { if (findex > 0) {return 0;} } else { return 0; } } *mote_one = atoi(buf); findex = 0; // Read in second number while(1) { ch = getc(file); if (ch == EOF) {return 0;} else if (ch >= '0' && ch <= '9') { buf[findex] = (char)ch; findex++; } else if (ch == ':') { buf[findex] = 0; break; } else if (ch == '\n' || ch == ' ' || ch == '\t') { if (findex == 0) {return 0;} else { buf[findex] = 0; break; } } else { return 0; } } *mote_two = atoi(buf); findex = 0; // Read in loss rate number while(1) { ch = getc(file); if (ch == EOF) {return 0;} else if ((ch >= '0' && ch <= '9') || ch == '.') { buf[findex] = (char)ch; findex++; } else if (ch == '\n' || ch == ' ' || ch == '\t') { if (findex == 0) {return 0;} else { buf[findex] = 0; break; } } else { return 0; } } *loss = atof(buf); return 1;}void lossy_init() { int sfd = open(lossyFileName, O_RDONLY); int i; FILE* file = fdopen(sfd, "r"); link_t* new_link; dbg_clear(DBG_SIM, "Initializing lossy model from %s.\n", lossyFileName); pthread_mutex_init(&radioConnectivityLock, NULL); adjacency_list_init(); if (sfd < 0) { dbg(DBG_SIM, "Cannot open %s - assuming single radio cell\n", lossyFileName); static_one_cell_init(); return; } for (i = 0; i < TOSNODES; i++) { radio_connectivity[i] = NULL; radio_idle_state[i] = 0; radio_heard[i] = 0; } while(1) { int mote_one; int mote_two; double loss; if (read_lossy_entry(file, &mote_one, &mote_two, &loss)) { if (mote_one != mote_two) { new_link = allocate_link(mote_two); new_link->data = loss; new_link->next_link = radio_connectivity[mote_one]; radio_connectivity[mote_one] = new_link; } } else { break; } } dbg(DBG_BOOT, ("RFM connectivity graph constructed.\n"));}link_t* lossy_neighbors(int moteID) { link_t *thelink; pthread_mutex_lock(&radioConnectivityLock); thelink = radio_connectivity[moteID]; pthread_mutex_unlock(&radioConnectivityLock); return thelink;}rfm_model* create_lossy_model(char* file) { rfm_model* model = (rfm_model*)malloc(sizeof(rfm_model)); if (file != NULL) { lossyFileName = file; } model->init = lossy_init; model->transmit = lossy_transmit; model->stop_transmit = lossy_stop_transmit; model->hears = lossy_hears; model->connected = lossy_connected; model->neighbors = lossy_neighbors; return model;}double get_link_prob_value(uint16_t moteID1, uint16_t moteID2) { link_t *current_link; pthread_mutex_lock(&radioConnectivityLock); current_link = radio_connectivity[moteID1]; while (current_link) { if (current_link->mote == moteID2) { pthread_mutex_unlock(&radioConnectivityLock); return current_link->data; } current_link = current_link->next_link; } pthread_mutex_unlock(&radioConnectivityLock); return 1; }void set_link_prob_value(uint16_t moteID1, uint16_t moteID2, double prob) { link_t* current_link; link_t* new_link; pthread_mutex_lock(&radioConnectivityLock); current_link = radio_connectivity[moteID1]; dbg(DBG_SIM, "RFM: MDW: Setting loss prob %d->%d to %0.3f\n", moteID1, moteID2, prob); while (current_link) { if (current_link->mote == moteID2) { current_link->data = prob; pthread_mutex_unlock(&radioConnectivityLock); return; } current_link = current_link->next_link; } new_link = allocate_link(moteID2); new_link->next_link = radio_connectivity[moteID1]; new_link->data = prob; radio_connectivity[moteID1] = new_link; pthread_mutex_unlock(&radioConnectivityLock);}double get_noise_prob_value() { return noise_prob; }void set_noise_prob_value(double prob) { noise_prob = prob;}char get_wait_length_before_idle() { short temp = IDLE_STATE_MASK; char count = 0; while (temp) { count++; temp = temp >> 1; temp &= 0x7fff; } return count;}void set_wait_length_before_idle(int count) { short temp = 0; while (count) { temp = temp << 1; temp |= 1; count--; } IDLE_STATE_MASK = temp;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -