📄 rfm_model.c
字号:
// $Id: rfm_model.c,v 1.13.2.2 2003/08/18 22:09:50 cssharp Exp $/* tab:4 * "Copyright (c) 2000-2003 The Regents of the University of California. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement is * hereby granted, provided that the above copyright notice, the following * two paragraphs and the author appear in all copies of this software. * * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF * CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS." * * Copyright (c) 2002-2003 Intel Corporation * All rights reserved. * * This file is distributed under the terms in the attached INTEL-LICENSE * file. If you do not find these files, copies can be found by writing to * Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA, * 94704. Attention: Intel License Inquiry. *//* * PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF * CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, * UPDATES, ENHANCEMENTS, OR MODIFICATIONS." * * Authors: Philip Levis, Nelson Lee * */#include <sys/types.h>#include <sys/stat.h>#include <fcntl.h>#include <pthread.h>/* * The simple RFM model simulates every mote being in a single cell * (they can all hear one another). Bit transmission is * error-free. Simulation is achieved by using a radio_active variable * for each mote, which starts at 0. Every time a mote transmits, it * increments the radio_active value for every other mote. When a mote * listens, it hears a bit if the radio_active value is one or * greater. When a mote finishes transmitting, it decrements the * radio_active value of every other mote. Although very simple, this * simulation mechanism allows for extremeley accurate network timing * simulation. * *///char isTransmitting[TOSNODES];char transmitting[TOSNODES];int radio_active[TOSNODES];link_t* radio_connectivity[TOSNODES]; // adjacency listspthread_mutex_t radioConnectivityLock;char sendProb[TOSNODES];char receiveProb[TOSNODES];// buffer for idle detection over networkshort radio_heard[TOSNODES];// state indicating whether channel is idlebool radio_idle_state[TOSNODES];double noise_prob = 0;short IDLE_STATE_MASK = 0xffff;char* lossyFileName = "lossy.nss";bool simple_connected(int moteID1, int moteID2) { return TRUE;}void simple_init() { int i; pthread_mutex_init(&radioConnectivityLock, NULL); adjacency_list_init(); static_one_cell_init(); for (i = 0; i < tos_state.num_nodes; i++) { radio_active[i] = 0; }}void simple_transmit(int moteID, char bit) { int i; transmitting[moteID] = bit; for (i = 0; i < tos_state.num_nodes; i++) { radio_active[i] += bit; }}void simple_stops_transmit(int moteID) { int i; if (transmitting[moteID]) { transmitting[moteID] = 0; for (i = 0; i < tos_state.num_nodes; i++) { radio_active[i]--; } }}char simple_hears(int moteID) { // Uncomment these lines to add erroneus 1s. The probability // can be adjusted by changing the constants. //int rand = random(); //if ((rand & (int)0xf) == 0xf) { // return 1; //} //else { return (radio_active[moteID] > 0)? 1:0; //}}link_t* simple_neighbors(int moteID) { link_t *thelink; pthread_mutex_lock(&radioConnectivityLock); thelink = radio_connectivity[moteID]; pthread_mutex_unlock(&radioConnectivityLock); return thelink;}rfm_model* create_simple_model() { rfm_model* model = (rfm_model*)malloc(sizeof(rfm_model)); model->init = simple_init; model->transmit = simple_transmit; model->stop_transmit = simple_stops_transmit; model->hears = simple_hears; model->connected = simple_connected; model->neighbors = simple_neighbors; return model;}int read_entry(FILE* file, int* mote_one, int* mote_two) { char buf[128]; int findex = 0; int ch; // Read in first number while(1) { ch = getc(file); if (ch == EOF) {return 0;} else if (ch >= '0' && ch <= '9') { buf[findex] = (char)ch; findex++; } else if (ch == ':') { buf[findex] = 0; break; } else if (ch == '\n' || ch == ' ' || ch == '\t') { if (findex > 0) {return 0;} } else { return 0; } } *mote_one = atoi(buf); findex = 0; // Read in second number while(1) { ch = getc(file); if (ch == EOF) {return 0;} else if (ch >= '0' && ch <= '9') { buf[findex] = (char)ch; findex++; } else if (ch == '\n' || ch == ' ' || ch == '\t') { if (findex == 0) {return 0;} else { buf[findex] = 0; break; } } else { return 0; } } *mote_two = atoi(buf); return 1;}void static_one_cell_init() { int i, j; link_t* new_link; pthread_mutex_init(&radioConnectivityLock, NULL); radio_connectivity[0] = NULL; for (i = 0; i < tos_state.num_nodes; i++) { for (j = 0; j < tos_state.num_nodes; j++) { if (i != j) { new_link = allocate_link(j); new_link->data = 0.0; // bit error rate set to zero // so can be reused by lossy new_link->next_link = radio_connectivity[i]; radio_connectivity[i] = new_link; } } }}void static_init() { int sfd = open("cells.txt", O_RDONLY); int i; FILE* file = fdopen(sfd, "r"); link_t* new_link; pthread_mutex_init(&radioConnectivityLock, NULL); adjacency_list_init(); if (sfd < 0) { dbg(DBG_ERROR, ("No cells.txt found for static rfm model. Defaulting to one cell.\n")); static_one_cell_init(); return; } for (i = 0; i < TOSNODES; i++) { radio_connectivity[i] = NULL; } while(1) { int mote_one; int mote_two; if (read_entry(file, &mote_one, &mote_two)) { new_link = allocate_link(mote_two); new_link->next_link = radio_connectivity[mote_one]; radio_connectivity[mote_one] = new_link; new_link = allocate_link(mote_one); new_link->next_link = radio_connectivity[mote_two]; radio_connectivity[mote_two] = new_link; } else { break; } } dbg(DBG_BOOT, ("RFM connectivity graph constructed.\n"));}bool static_connected(int moteID1, int moteID2) { // this method is rather slow, and runs on the order of the number // of links attached moteID1 because it traverses moteID1's // adjacency list to make this a constant time operation, add a // hashtable to the adjacency list implementation link_t* current_link; pthread_mutex_lock(&radioConnectivityLock); current_link = radio_connectivity[moteID1]; while (current_link) { if (current_link->mote == moteID2) { pthread_mutex_unlock(&radioConnectivityLock); return TRUE; } current_link = current_link->next_link; } pthread_mutex_unlock(&radioConnectivityLock); return FALSE;}void static_transmit(int moteID, char bit) { link_t* current_link; pthread_mutex_lock(&radioConnectivityLock); current_link = radio_connectivity[moteID]; transmitting[moteID] = bit; while (current_link) { radio_active[current_link->mote] += bit; current_link = current_link->next_link; } pthread_mutex_unlock(&radioConnectivityLock);}void static_stops_transmit(int moteID) { link_t* current_link; pthread_mutex_lock(&radioConnectivityLock); current_link = radio_connectivity[moteID]; if (transmitting[moteID]) { transmitting[moteID] = 0; while (current_link) { radio_active[current_link->mote]--; current_link = current_link->next_link; } } pthread_mutex_unlock(&radioConnectivityLock);}char static_hears(int moteID) { return (radio_active[moteID] > 0)? 1:0;}rfm_model* create_static_model() { rfm_model* model = (rfm_model*)malloc(sizeof(rfm_model));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -