📄 spibytefifoc.nc
字号:
// $Id: SpiByteFifoC.nc,v 1.6.4.4 2003/08/18 22:09:49 cssharp Exp $/* tab:4 * "Copyright (c) 2000-2003 The Regents of the University of California. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement is * hereby granted, provided that the above copyright notice, the following * two paragraphs and the author appear in all copies of this software. * * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF * CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS." * * Copyright (c) 2002-2003 Intel Corporation * All rights reserved. * * This file is distributed under the terms in the attached INTEL-LICENSE * file. If you do not find these files, copies can be found by writing to * Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA, * 94704. Attention: Intel License Inquiry. */module SpiByteFifoC{ provides interface SpiByteFifo; //uses interface SlavePin;}implementation{ uint8_t nextByte; uint8_t state; uint8_t spdr; uint8_t radioState; enum { IDLE, FULL, OPEN, READING }; enum { RADIO_RECEIVING, RADIO_SENDING, RADIO_IDLE }; enum { TOSH_BIT_RATE = 20 * 4 / 2 * 5/4, }; TOS_SIGNAL_HANDLER(SIG_SPI,()) { uint8_t temp = spdr; spdr = nextByte; state = OPEN; signal SpiByteFifo.dataReady(temp); } command result_t SpiByteFifo.send(uint8_t data) { event_t* fevent; long long ftime; if(state == OPEN){ nextByte = data; state = FULL; return SUCCESS; }if(state == IDLE){ state = OPEN; signal SpiByteFifo.dataReady(0); spdr = data; radioState = RADIO_SENDING; if (spiByteEvents[NODE_NUM] != NULL) { event_spi_byte_invalidate(spiByteEvents[NODE_NUM]); } dbg(DBG_MEM, "malloc spi byte event.\n"); fevent = (event_t*)malloc(sizeof(event_t)); ftime = tos_state.tos_time + RADIO_TICKS_PER_EVENT; event_spi_byte_create(fevent, NODE_NUM, ftime, RADIO_TICKS_PER_EVENT, 0); TOS_queue_insert_event(fevent); spiByteEvents[NODE_NUM] = fevent; return SUCCESS; } return FAIL; } command result_t SpiByteFifo.idle() { spdr = 0; nextByte = 0; radioState = RADIO_IDLE; state = IDLE; nextByte = 0; if (spiByteEvents[NODE_NUM] != NULL) { event_spi_byte_end(spiByteEvents[NODE_NUM]); spiByteEvents[NODE_NUM] = NULL; } return SUCCESS; } command result_t SpiByteFifo.startReadBytes(uint16_t timing) { if(state == IDLE){ //if (spiByteEvents[NODE_NUM] != NULL) //dbg(DBG_ERROR, "SpiByteFifo is in a wacked state...\n"); state = READING; radioState = RADIO_RECEIVING; spdr = 0; return SUCCESS; } return FAIL; } command result_t SpiByteFifo.txMode() { radioState = RADIO_SENDING; TOSH_CLR_RFM_CTL0_PIN(); TOSH_SET_RFM_CTL1_PIN(); return SUCCESS; } command result_t SpiByteFifo.rxMode() { radioState = RADIO_RECEIVING; TOSH_CLR_RFM_TXD_PIN(); TOSH_MAKE_RFM_TXD_INPUT(); TOSH_SET_RFM_CTL0_PIN(); TOSH_SET_RFM_CTL1_PIN(); return SUCCESS; } command result_t SpiByteFifo.phaseShift() { event_t* fevent; long long ftime; if (spiByteEvents[NODE_NUM] != NULL) { event_spi_byte_invalidate(spiByteEvents[NODE_NUM]); } dbg(DBG_MEM, "malloc spi byte event.\n"); fevent = (event_t*)malloc(sizeof(event_t)); ftime = tos_state.tos_time + RADIO_TICKS_PER_EVENT + 50; event_spi_byte_create(fevent, NODE_NUM, ftime, RADIO_TICKS_PER_EVENT, 0); TOS_queue_insert_event(fevent); spiByteEvents[NODE_NUM] = fevent; return SUCCESS; } void event_spi_byte_handle(event_t* fevent, struct TOS_state* fstate) __attribute__ ((C, spontaneous)) { event_t* nevent; long long ftime; int i; event_queue_t* queue = &(fstate->queue); spi_byte_data_t* data = (spi_byte_data_t*)fevent->data; uint8_t temp; link_t* current_link; radioWaitingState[NODE_NUM] = NOT_WAITING; if (data->ending) { spiByteEvents[NODE_NUM] = NULL; tos_state.rfm->stop_transmit(NODE_NUM); dbg(DBG_RADIO, "RADIO: Spi Byte event ending for mote %i at %lli discarded.\n", data->mote, fevent->time); event_cleanup(fevent); } else if (data->valid) { tos_state.rfm->stop_transmit(NODE_NUM); if (dbg_active(DBG_RADIO)) { char ttime[128]; ttime[0] = 0; printTime(ttime, 128); dbg(DBG_RADIO, "RADIO: Spi Byte event handled for mote %i at %s with interval of %i.\n", fevent->mote, ttime, data->interval); //dbg(DBG_RADIO, "RADIO: Spi Byte event handled for mote %i at %lli\n", fevent->mote, fevent->time); } if (radioState == RADIO_RECEIVING) { temp = TOSH_rfm_rx_bit(); temp &= 0x01; spdr <<= 1; spdr |= temp; } else if (radioState == RADIO_SENDING) { temp = (spdr >> 0x7) & 0x1; TOSH_rfm_tx_bit(temp); spdr <<= 1; //if transmitting a 1, check to see if it is necessary to update other mote's events... if (temp) { current_link = tos_state.rfm->neighbors(NODE_NUM); while (current_link) { i = current_link->mote; if ((radioWaitingState[i] == WAITING_FOR_ONE_TO_CAPTURE) && (spiByteEvents[i] == NULL || spiByteEvents[i]->time > tos_state.tos_time + 419)) { if (spiByteEvents[i] != NULL) { event_spi_byte_invalidate(spiByteEvents[i]); } dbg(DBG_MEM, "malloc spi byte event.\n"); nevent = (event_t*)malloc(sizeof(event_t)); ftime = tos_state.tos_time + 419; event_spi_byte_create(nevent, i, ftime, RADIO_TICKS_PER_EVENT, 0); TOS_queue_insert_event(nevent); spiByteEvents[i] = nevent; } current_link = current_link->next_link; } } } else { dbg(DBG_ERROR, "SpiByteFifo is seriously wacked\n"); } if (data->count == 7) { TOS_ISSUE_SIGNAL(SIG_SPI)(); } data->count = (data->count+1) & 0x07; fevent->time = fevent->time + data->interval; queue_insert_event(queue, fevent); } else { dbg(DBG_RADIO, "RADIO: invalid Spi Byte event for mote %i at %lli discarded.\n", data->mote, fevent->time); event_cleanup(fevent); } } void event_spi_byte_create(event_t* fevent, int mote, long long ftime, int interval, int count) __attribute__ ((C, spontaneous)) { //int time = THIS_NODE.time; spi_byte_data_t* data = (spi_byte_data_t*)malloc(sizeof(spi_byte_data_t)); dbg(DBG_MEM, "malloc Spi Byte event data.\n"); data->interval = interval; data->mote = mote; data->valid = 1; data->count = count; data->ending = 0; fevent->mote = mote; fevent->data = data; fevent->time = ftime; fevent->handle = event_spi_byte_handle; fevent->cleanup = event_total_cleanup; fevent->pause = 0; } void event_spi_byte_invalidate(event_t* fevent) __attribute__ ((C, spontaneous)) { spi_byte_data_t* data = fevent->data; data->valid = 0; } void event_spi_byte_end(event_t* fevent) __attribute__ ((C, spontaneous)) { spi_byte_data_t* data = fevent->data; data->ending = 1; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -