📄 skipjackm.nc
字号:
// $Id: SkipJackM.nc,v 1.1.2.4 2003/08/26 09:08:14 cssharp Exp $/* tab:4 * "Copyright (c) 2000-2003 The Regents of the University of California. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement is * hereby granted, provided that the above copyright notice, the following * two paragraphs and the author appear in all copies of this software. * * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF * CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS." * * Copyright (c) 2002-2003 Intel Corporation * All rights reserved. * * This file is distributed under the terms in the attached INTEL-LICENSE * file. If you do not find these files, copies can be found by writing to * Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA, * 94704. Attention: Intel License Inquiry. *//* Authors: Naveen Sastry * Date: 12/28/02 *//** * @author Naveen Sastry */includes crypto;/** * From the NIST description of SkipJack. */module SkipJackM { provides interface BlockCipher; provides interface BlockCipherInfo;}implementation{ // our context: we just expand the key to 128 bytes. We technically don't // need to do this, but it makes implementation of the G boxes oh so much // easier. typedef struct SJContext { uint8_t skey [ 32 /* ROUNDS */ * 4 /* BYTES PER FEISTEL */ ]; } SJContext; // Skipjack only deals with 8 byte blocks enum { BSIZE = 8 }; // F-BOX uint8_t F[] __attribute__((C)) = { 0xA3, 0xD7, 0x09, 0x83, 0xF8, 0x48, 0xF6, 0xF4, 0xB3, 0x21, 0x15, 0x78, 0x99, 0xB1, 0xAF, 0xF9, 0xE7, 0x2D, 0x4D, 0x8A, 0xCE, 0x4C, 0xCA, 0x2E, 0x52, 0x95, 0xD9, 0x1E, 0x4E, 0x38, 0x44, 0x28, 0x0A, 0xDF, 0x02, 0xA0, 0x17, 0xF1, 0x60, 0x68, 0x12, 0xB7, 0x7A, 0xC3, 0xE9, 0xFA, 0x3D, 0x53, 0x96, 0x84, 0x6B, 0xBA, 0xF2, 0x63, 0x9A, 0x19, 0x7C, 0xAE, 0xE5, 0xF5, 0xF7, 0x16, 0x6A, 0xA2, 0x39, 0xB6, 0x7B, 0x0F, 0xC1, 0x93, 0x81, 0x1B, 0xEE, 0xB4, 0x1A, 0xEA, 0xD0, 0x91, 0x2F, 0xB8, 0x55, 0xB9, 0xDA, 0x85, 0x3F, 0x41, 0xBF, 0xE0, 0x5A, 0x58, 0x80, 0x5F, 0x66, 0x0B, 0xD8, 0x90, 0x35, 0xD5, 0xC0, 0xA7, 0x33, 0x06, 0x65, 0x69, 0x45, 0x00, 0x94, 0x56, 0x6D, 0x98, 0x9B, 0x76, 0x97, 0xFC, 0xB2, 0xC2, 0xB0, 0xFE, 0xDB, 0x20, 0xE1, 0xEB, 0xD6, 0xE4, 0xDD, 0x47, 0x4A, 0x1D, 0x42, 0xED, 0x9E, 0x6E, 0x49, 0x3C, 0xCD, 0x43, 0x27, 0xD2, 0x07, 0xD4, 0xDE, 0xC7, 0x67, 0x18, 0x89, 0xCB, 0x30, 0x1F, 0x8D, 0xC6, 0x8F, 0xAA, 0xC8, 0x74, 0xDC, 0xC9, 0x5D, 0x5C, 0x31, 0xA4, 0x70, 0x88, 0x61, 0x2C, 0x9F, 0x0D, 0x2B, 0x87, 0x50, 0x82, 0x54, 0x64, 0x26, 0x7D, 0x03, 0x40, 0x34, 0x4B, 0x1C, 0x73, 0xD1, 0xC4, 0xFD, 0x3B, 0xCC, 0xFB, 0x7F, 0xAB, 0xE6, 0x3E, 0x5B, 0xA5, 0xAD, 0x04, 0x23, 0x9C, 0x14, 0x51, 0x22, 0xF0, 0x29, 0x79, 0x71, 0x7E, 0xFF, 0x8C, 0x0E, 0xE2, 0x0C, 0xEF, 0xBC, 0x72, 0x75, 0x6F, 0x37, 0xA1, 0xEC, 0xD3, 0x8E, 0x62, 0x8B, 0x86, 0x10, 0xE8, 0x08, 0x77, 0x11, 0xBE, 0x92, 0x4F, 0x24, 0xC5, 0x32, 0x36, 0x9D, 0xCF, 0xF3, 0xA6, 0xBB, 0xAC, 0x5E, 0x6C, 0xA9, 0x13, 0x57, 0x25, 0xB5, 0xE3, 0xBD, 0xA8, 0x3A, 0x01, 0x05, 0x59, 0x2A, 0x46 }; // G-Permutation: 4 round feistal structure #define G(key, b, bLeft, bRight) \ ( bLeft = (b >> 8) , \ bRight = b, \ bLeft ^= F[bRight ^ key[0]], \ bRight ^= F[bLeft ^ key[1]], \ bLeft ^= F[bRight ^ key[2]], \ bRight ^= F[bLeft ^ key[3]], \ (bLeft << 8) | bRight)#define G_INV(key, b, bLeft, bRight) \ ( bLeft = (b >> 8), \ bRight = b, \ bRight ^= F[bLeft ^ key[3]], \ bLeft ^= F[bRight ^ key[2]], \ bRight ^= F[bLeft ^ key[1]], \ bLeft ^= F[bRight ^ key[0]], \ (bLeft << 8) | bRight) // A-RULE: #define RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ) { \ tmp = w4; \ w4 = w3; \ w3 = w2; \ w2 = G(skey, w1, bLeft, bRight); \ w1 = tmp ^ w2 ^ counter; \ counter++; \ skey += 4; }#define RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight) { \ tmp = w4; \ w4 = w1 ^ w2 ^ counter; \ w1 = G_INV(skey, w2, bLeft, bRight); \ w2 = w3; \ w3 = tmp; \ counter--; \ skey -= 4; } \ // B-RULE: #define RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ) { \ tmp = w1; \ w1 = w4; \ w4 = w3; \ w3 = tmp ^ w2 ^ counter; \ w2 = G(skey, tmp, bLeft, bRight); \ counter++; \ skey += 4; }#define RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ) { \ tmp = w1; \ w1 = G_INV(skey, w2, bLeft, bRight); \ w2 = w1 ^ w3 ^ counter; \ w3 = w4; \ w4 = tmp; \ counter--; \ skey -= 4; } result_t setupKey (CipherContext * context, uint8_t * key, uint8_t keysize); /** * Debug function */ void dumpBuffer (char * bufName, uint8_t * buf, uint8_t size) {#ifdef O uint8_t i = 0; // fixme watch buffer overrun char tmp[512]; for (; i < size; i++) { sprintf (tmp + i * 3, "%2x ", (char)buf[i] & 0xff); } dbg(DBG_CRYPTO, "%s: {%s}\n", bufName, tmp);#endif } /** * Initialize the BlockCipher context. * * @param context structure to hold the opaque data from this initialization * call. It should be passed to future invocations of this module * which use this particular key. * @param blockSize size of the block in bytes. Some cipher implementation * may support multiple block sizes, in which case any valid size * is valid. * @param keySize key size in bytes * @param key pointer to the key * * @return Whether initialization was successful. The command may be * unsuccessful if the key size or blockSize are not valid for the * given cipher implementation. */ command result_t BlockCipher.init(CipherContext * context, uint8_t blockSize, uint8_t keySize, uint8_t * key) { // 8 byte blocks only if (blockSize != BSIZE) { return FAIL; } return setupKey (context, key, keySize); } /** * Encrypts a single block (of blockSize) using the key in the keySize. * * @param context holds the module specific opaque data related to the * key (perhaps key expansions). * @param plainBlock a plaintext block of blockSize * @param cipherBlock the resulting ciphertext block of blockSize * * @return Whether the encryption was successful. Possible failure reasons * include not calling init(). */ async command result_t BlockCipher.encrypt(CipherContext * context, uint8_t * plainBlock, uint8_t * cipherBlock) { // prologue 10 pushs = 20 cycles register uint8_t counter = 1; register uint8_t * skey = ((SJContext*)context->context)->skey; register uint16_t w1, w2, w3, w4, tmp; register uint8_t bLeft, bRight; //dumpBuffer("SkipJack.encrypt: plainBlock", plainBlock, 8); c2sM(plainBlock, w1); plainBlock += 2; c2sM(plainBlock, w2); plainBlock += 2; c2sM(plainBlock, w3); plainBlock += 2; c2sM(plainBlock, w4); plainBlock += 2; while (counter < 9) RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); while (counter < 17) RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); while (counter < 25) RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); while (counter < 33) RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); s2cM(w1, cipherBlock); cipherBlock += 2; s2cM(w2, cipherBlock); cipherBlock += 2; s2cM(w3, cipherBlock); cipherBlock += 2; s2cM(w4, cipherBlock); cipherBlock += 2; dumpBuffer ("SkipJack.encrypt: cipherBlock", cipherBlock - 8, 8); return SUCCESS; } /** * Decrypts a single block (of blockSize) using the key in the keySize. Not * all ciphers will implement this function (since providing encryption * is a useful primitive). * * @param context holds the module specific opaque data related to the * key (perhaps key expansions). * @param cipherBlock a ciphertext block of blockSize * @param plainBlock the resulting plaintext block of blockSize * * @return Whether the decryption was successful. Possible failure reasons * include not calling init() or an unimplimented decrypt function. */ async command result_t BlockCipher.decrypt(CipherContext * context, uint8_t * cipherBlock, uint8_t * plainBlock) { register uint8_t counter = 32; register uint8_t * skey = ((SJContext*)context->context)->skey + 124; register uint16_t w1, w2, w3, w4, tmp; register uint8_t bLeft, bRight; dumpBuffer("SkipJack.decrypt: cipherBlock", plainBlock, 8); c2sM(cipherBlock, w1); cipherBlock += 2; c2sM(cipherBlock, w2); cipherBlock += 2; c2sM(cipherBlock, w3); cipherBlock += 2; c2sM(cipherBlock, w4); while (counter > 24) RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); while (counter > 16) RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); while (counter > 8) RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); while (counter > 0) RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); s2cM(w1, plainBlock); plainBlock += 2; s2cM(w2, plainBlock); plainBlock += 2; s2cM(w3, plainBlock); plainBlock += 2; s2cM(w4, plainBlock); dumpBuffer ("SkipJack.decrypt: plainBlock", plainBlock - 6, 8); return SUCCESS; } /** * Performs the key expansion on the real secret. * * @param secret key */ result_t setupKey (CipherContext * context, uint8_t * key, uint8_t keysize) { int i = 0, m; uint8_t * skey = ((SJContext *)context->context)->skey; // for keys which are smaller than 80 bits, pad with 0 until they reach 80 // bits in size. // note that key expansion is just concatenation. for (; i < 128; i++) { m = i % 10; if ( m >= keysize) skey[i] = 0; else skey[i] = key[m]; } return SUCCESS; } /** * Returns the preferred block size that this cipher operates with. It is * always safe to call this function before the init() call has been made. * * @return the preferred block size for this cipher. In the case where the * cipher operates with multiple block sizes, this will pick one * particular size (deterministically). */ async command uint8_t BlockCipherInfo.getPreferredBlockSize() { return BSIZE; } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -