📄 tinysecm.nc
字号:
// $Id: TinySecM.nc,v 1.1.2.5 2003/08/26 09:08:14 cssharp Exp $/* tab:4 * "Copyright (c) 2000-2003 The Regents of the University of California. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement is * hereby granted, provided that the above copyright notice, the following * two paragraphs and the author appear in all copies of this software. * * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF * CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS." * * Copyright (c) 2002-2003 Intel Corporation * All rights reserved. * * This file is distributed under the terms in the attached INTEL-LICENSE * file. If you do not find these files, copies can be found by writing to * Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA, * 94704. Attention: Intel License Inquiry. *//* Authors: Chris Karlof * Date: 8/1/03 *//** * @author Chris Karlof */module TinySecM{ provides { interface TinySec; interface TinySecControl; } uses { interface BlockCipherMode; interface MAC; interface Random; interface BlockCipherInfo; interface TinySecRadio; interface Leds; }}implementation{ bool initialized; enum { // we allocate some static buffers on the stack; they have to be less // than this size TINYSECM_MAX_BLOCK_SIZE = 16, COMPUTE_MAC_IDLE, // no verify in progress COMPUTE_MAC_INITIALIZED, // verify has been initialized and //ready for incremental computation COMPUTE_MAC_BUSY, // verify in the middle of incremental computation DECRYPT_IDLE, // no decrypt in progress DECRYPT_INITIALIZED, // decrypt has been initialized and //is ready for incremental decryption DECRYPT_BUSY }; // incremental decrypt in progress int16_t txlength = 0; int16_t rxlength = 0; bool txencrypt = TRUE; bool rxdecrypt = TRUE; int16_t TxByteCnt = 0; int16_t RxByteCnt = 0; int16_t recDataLength = 0; int16_t sendDataLength = 0; uint8_t compute_mac_state; uint8_t decrypt_state; uint8_t blockSize; // buffer for posting mac opration for receive struct computeMACBuffer { bool computeMACWaiting; bool computeMACInitWaiting; uint8_t position; uint8_t amount; bool finishMACWaiting; } computeMACBuffer; // buffer for posting decrypt operations on receive struct decryptBuffer { bool decryptWaiting; bool decryptInitWaiting; uint8_t position; uint8_t amount; } decryptBuffer; CipherModeContext cipherModeContext; MACContext macContext; uint8_t iv[TINYSECM_MAX_BLOCK_SIZE]; // TinySec buffers TinySec_Msg tinysec_rec_buffer; TinySec_Msg tinysec_send_buffer; TinySec_Msg* ciphertext_send_ptr; TinySec_Msg* ciphertext_rec_ptr; TOS_Msg_TinySecCompat* cleartext_send_ptr; TOS_Msg_TinySecCompat* cleartext_rec_ptr; bool test_state = FALSE; /** * Initializes TinySec. BlockCipherMode and MAC contexts are initialized * with respective keys, key size, and block size. * * @param blockSize block size of the block cipher in bytes * @param keySize key size of the block cipher in bytes * @param encryptionKey pointer to an array of keySize bytes * representing the key used for encryption * @param MACKey pointer to an array of keySize bytes * representing the key used for calculating MAC's * @return Whether TinySec initialization was successful. Reasons * for failure include BlockCipherMode or MAC init() */ command result_t TinySecControl.init(uint8_t keySize, uint8_t * encryptionKey, uint8_t * MACKey) { result_t r1, r2, r3, r4; int i, local_addr; uint8_t tmp = call BlockCipherInfo.getPreferredBlockSize(); atomic { if(tmp > TINYSECM_MAX_BLOCK_SIZE) { blockSize = 0; r3 = FAIL; } else { blockSize = tmp; r3 = SUCCESS; } computeMACBuffer.computeMACWaiting = FALSE; computeMACBuffer.computeMACInitWaiting = FALSE; compute_mac_state = COMPUTE_MAC_IDLE; decrypt_state = DECRYPT_IDLE; decryptBuffer.decryptWaiting = FALSE; decryptBuffer.decryptInitWaiting = FALSE; computeMACBuffer.finishMACWaiting = FALSE; // FIXME: replace this with EEPROM read or random IV // since IV is reset on reboots, this is bad for(i=0;i<blockSize;i++) { iv[i] = 0; } if(TINYSEC_IV_LENGTH < TINYSEC_NODE_ID_SIZE) r4 = FAIL; else r4 = SUCCESS; // write the source address into the 3rd and 4th bytes of iv local_addr = TOS_LOCAL_ADDRESS; iv[TINYSEC_IV_LENGTH-TINYSEC_NODE_ID_SIZE] = local_addr & 0xff; for(i=1;i<TINYSEC_NODE_ID_SIZE;i++) { local_addr = local_addr >> 8; iv[TINYSEC_IV_LENGTH-TINYSEC_NODE_ID_SIZE+i] = local_addr & 0xff; } } r1 = call BlockCipherMode.init(&cipherModeContext,keySize,encryptionKey); r2 = call MAC.init(&macContext,keySize,MACKey); if(rcombine(rcombine(r1,r2),rcombine(r3,r4)) == FAIL) return FAIL; else { atomic { initialized = TRUE; } return SUCCESS; } } result_t decryptIncrementalInit(); result_t decryptIncremental(uint8_t incr_decrypt_start, uint8_t amount); result_t MACincrementalInit(); result_t computeMACIncremental(uint8_t incr_mac_start, uint8_t amount); result_t computeMACIncrementalFinish(); result_t verifyMAC(); result_t computeMAC(); result_t encrypt(); result_t noEncrypt(); result_t checkedQueuedCrypto(); bool interruptDisable() { bool result = (inp(SREG) & 0x80) != 0; cli(); return result; } result_t interruptEnable() { sei(); return SUCCESS; } result_t postIncrementalMACInit() { computeMACBuffer.computeMACInitWaiting = TRUE; return SUCCESS; } result_t postIncrementalMAC(uint8_t incr_mac_start, uint8_t amount) { if(computeMACBuffer.computeMACWaiting) { computeMACBuffer.position += amount; } else { computeMACBuffer.computeMACWaiting = TRUE; computeMACBuffer.position = incr_mac_start; computeMACBuffer.amount = amount; } return SUCCESS; } result_t postIncrementalMACFinish() { computeMACBuffer.finishMACWaiting = TRUE; return SUCCESS; } result_t postIncrementalDecryptInit() { decryptBuffer.decryptInitWaiting = TRUE; return SUCCESS; } result_t postIncrementalDecrypt(uint8_t incr_decrypt_start, uint8_t amount) { if(decryptBuffer.decryptWaiting) { decryptBuffer.amount += amount; } else { decryptBuffer.decryptWaiting = TRUE; decryptBuffer.position = incr_decrypt_start; decryptBuffer.amount = amount; } return SUCCESS; } result_t checkQueuedCrypto() { result_t result = SUCCESS; // crypto operation already in progress if(compute_mac_state == COMPUTE_MAC_BUSY || decrypt_state == DECRYPT_BUSY) return SUCCESS; if(computeMACBuffer.computeMACInitWaiting) { computeMACBuffer.computeMACInitWaiting = FALSE; result = rcombine(result,MACincrementalInit()); } if(computeMACBuffer.computeMACWaiting) { computeMACBuffer.computeMACWaiting = FALSE; result = rcombine(result,computeMACIncremental(computeMACBuffer.position, computeMACBuffer.amount)); } // check waiting state and finish up work if(computeMACBuffer.finishMACWaiting) { computeMACBuffer.finishMACWaiting = FALSE; result = rcombine(result,computeMACIncrementalFinish()); } if(decryptBuffer.decryptInitWaiting) { decryptBuffer.decryptInitWaiting = FALSE; result = rcombine(result,decryptIncrementalInit()); } if(decryptBuffer.decryptWaiting) { decryptBuffer.decryptWaiting = FALSE; if(decrypt_state == DECRYPT_INITIALIZED) { result = rcombine(result,decryptIncremental(decryptBuffer.position, decryptBuffer.amount)); } else if (decrypt_state == DECRYPT_IDLE) { result = rcombine(result,decryptIncrementalInit()); } else { return FAIL; } } return result; } // WARNING: this function makes assumptions about the stucture of TinySec_Msg! // Incremental MAC computation must be initialized before this is called. result_t decryptIncrementalInit() { uint8_t decrypt_iv[TINYSECM_MAX_BLOCK_SIZE]; int i; result_t result; uint16_t ivLengthRemaining = sizeof(ciphertext_rec_ptr->addr) + sizeof(ciphertext_rec_ptr->type) + sizeof(ciphertext_rec_ptr->length); test_state = FALSE; if(decrypt_state != DECRYPT_IDLE || !initialized) return FAIL; decrypt_state = DECRYPT_BUSY; interruptEnable(); if(ivLengthRemaining > (blockSize - TINYSEC_IV_LENGTH)) ivLengthRemaining = blockSize - TINYSEC_IV_LENGTH; // copy current iv into cipher buffer iv field memcpy(decrypt_iv,ciphertext_rec_ptr->iv,TINYSEC_IV_LENGTH); // fill in remaining space with addr, AM type, and length memcpy(decrypt_iv+TINYSEC_IV_LENGTH,&(ciphertext_rec_ptr->addr), ivLengthRemaining); // zero out the rest of the iv for(i=ivLengthRemaining+TINYSEC_IV_LENGTH;i<blockSize;i++) { decrypt_iv[i] = 0; } // if less than one block, then use one block. // assumes buffer has been padded. if(recDataLength < blockSize) { result = call BlockCipherMode.initIncrementalDecrypt(&cipherModeContext, decrypt_iv, blockSize); dbg(DBG_CRYPTO,"DECRYPT: init size=%d\n",blockSize); } else { result = call BlockCipherMode.initIncrementalDecrypt(&cipherModeContext, decrypt_iv, recDataLength); dbg(DBG_CRYPTO,"DECRYPT: init size=%d\n",recDataLength); } interruptDisable(); decrypt_state = DECRYPT_INITIALIZED; result = rcombine(result,checkQueuedCrypto()); return result; } result_t decryptIncremental(uint8_t incr_decrypt_start, uint8_t amount) { result_t result; uint16_t done; if(!initialized) return FAIL; if(decrypt_state == DECRYPT_IDLE) { return FAIL; // error } else if(decrypt_state == DECRYPT_INITIALIZED) { decrypt_state = DECRYPT_BUSY; interruptEnable(); result = call BlockCipherMode.incrementalDecrypt( &cipherModeContext, (ciphertext_rec_ptr->enc)+incr_decrypt_start, cleartext_rec_ptr->data,amount, &done); interruptDisable(); decrypt_state = DECRYPT_INITIALIZED; if(recDataLength < blockSize) { if(done == blockSize) { decrypt_state = DECRYPT_IDLE; } } else { if(done == recDataLength) { decrypt_state = DECRYPT_IDLE; } } // shouldn't have any pending decrypts but if someone decides to reorder // mac computes and decrypts, we should keep this here (mac computes are // currently given priority) result = rcombine(result,checkQueuedCrypto()); return result; } else { return FAIL; // error } } result_t MACincrementalInit() { result_t result; if(compute_mac_state != COMPUTE_MAC_IDLE || !initialized) return FAIL; compute_mac_state = COMPUTE_MAC_BUSY; interruptEnable(); result = call MAC.initIncrementalMAC(&macContext,rxlength); dbg(DBG_CRYPTO,"MAC init called: rxlength=%d.\n",rxlength); interruptDisable(); compute_mac_state = COMPUTE_MAC_INITIALIZED; result = rcombine(result,checkQueuedCrypto()); return result; } result_t computeMACIncremental(uint8_t incr_mac_start, uint8_t amount) { if(!initialized) return FAIL; if(incr_mac_start >= TINYSEC_MSG_DATA_SIZE - TINYSEC_MAC_LENGTH) return FAIL; if(compute_mac_state == COMPUTE_MAC_IDLE) { return FAIL; // has not been initialized
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -