📄 matrixclass.mc
字号:
/* -*-Mode: C++;-*- Copyright (C) 1997,1998 Shigeru Chiba, University of Tsukuba. Permission to use, copy, distribute and modify this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation. Shigeru Chiba makes no representations about the suitability of this software for any purpose. It is provided "as is" without express or implied warranty. July 1997: rewritten by Toru Takimoto for version 2.5.*//* Copyright (c) 1995, 1996 Xerox Corporation. All Rights Reserved. Use and copying of this software and preparation of derivative works based upon this software are permitted. Any copy of this software or of any derivative work must include the above copyright notice of Xerox Corporation, this paragraph and the one after it. Any distribution of this software or derivative works must comply with all applicable United States export control laws. This software is made available AS IS, and XEROX CORPORATION DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND NOTWITHSTANDING ANY OTHER PROVISION CONTAINED HEREIN, ANY LIABILITY FOR DAMAGES RESULTING FROM THE SOFTWARE OR ITS USE IS EXPRESSLY DISCLAIMED, WHETHER ARISING IN CONTRACT, TORT (INCLUDING NEGLIGENCE) OR STRICT LIABILITY, EVEN IF XEROX CORPORATION IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.*/#include <opencxx/mop.h>using namespace Opencxx;const char* SIZE = "N";const int MAX = 32;static struct { Ptree* expr; int k; } termTable[MAX];static int numOfTerms;static struct { Ptree *lexpr, *rexpr; int k; bool scalar; } mulTermTable[MAX];static int numOfMulTerms;static Ptree* DoOptimize0(Ptree*);static Ptree* DoOptimize1(Ptree*);static Ptree* MakeInlineExpr(Ptree*);static bool ParseTerms(Environment*, Ptree*, int);static bool IsScalarProduct(Environment*, Ptree*);static int NumOfVectorProducts();static int IndexOfVectorProducts();class MatrixClass : public Class {public: Ptree* TranslateInitializer(Environment*, Ptree*, Ptree*); Ptree* TranslateAssign(Environment*, Ptree*, Ptree*, Ptree*); Ptree* TranslateUserStatement(Environment*, Ptree*, Ptree*, Ptree*, Ptree*); static bool Initialize();};bool MatrixClass::Initialize(){ RegisterNewWhileStatement("forall"); return true;}Ptree* MatrixClass::TranslateInitializer(Environment* env, Ptree* name, Ptree* expr){ Ptree* sep = PtreeUtil::First(expr); Ptree* val = PtreeUtil::Second(expr); if(PtreeUtil::Eq(sep,'=') && PtreeUtil::Match(val, "[{ %* }]")) { Ptree* tmp = PtreeUtil::GenSym(); InsertBeforeStatement(env, Ptree::qMake("double `tmp`[] = `val`;\n")); return Ptree::Make("= %p", tmp); } else return Class::TranslateInitializer(env, name, expr);}Ptree* MatrixClass::TranslateUserStatement(Environment* env, Ptree* object, Ptree* op, Ptree* keyword, Ptree* rest){ Ptree *tmp, *body, *index; if(!PtreeUtil::Match(rest, "[([%?]) %?]", &tmp, &body)){ ErrorMessage(env, "invalid forall statement", nil, keyword); return nil; } index = PtreeUtil::GenSym(); return Ptree::qMake( "for(int `index` = 0; `index` < `SIZE` * `SIZE`; ++`index`){\n" " double& `tmp` = `object``op` element[`index`];\n" " `TranslateExpression(env, body)` }\n");}Ptree* MatrixClass::TranslateAssign(Environment* env, Ptree* object, Ptree* op, Ptree* expr){ if(!object->IsLeaf() || ! PtreeUtil::Eq(op,'=')) goto giveup; if(expr->IsLeaf()) // e.g. a = b; goto giveup; numOfTerms = 0; numOfMulTerms = 0; if(!ParseTerms(env, expr, 1)) goto giveup; switch(NumOfVectorProducts()){ case 0 : return DoOptimize0(object); case 1 : return DoOptimize1(object); default : goto giveup; // give up optimization if the number of // vector products are more than one because // the gain by inlining is relatively zero. }giveup: return Class::TranslateAssign(env, object, op, expr);}// Optimization for expressions that include no vector product.static Ptree* DoOptimize0(Ptree* object){ Ptree* index = PtreeUtil::GenSym(); return Ptree::qMake( "for(int `index` = 0; `index` < `SIZE` * `SIZE`; ++`index`)\n" " `object`.element[`index`] = `MakeInlineExpr(index)`;");}// Optimization for expressions that include only one vector product.static Ptree* DoOptimize1(Ptree* object){ char op; Ptree* index1 = PtreeUtil::GenSym(); Ptree* index2 = PtreeUtil::GenSym(); Ptree* index3 = PtreeUtil::GenSym(); Ptree* tmp = PtreeUtil::GenSym(); Ptree* index4 = PtreeUtil::GenSym(); int v = IndexOfVectorProducts(); if(mulTermTable[v].k > 0) op = '+'; else op = '-'; Ptree* inlined_expr = Ptree::qMake( "`mulTermTable[v].lexpr`.element[`index1` * `SIZE` + `index3`]" "* `mulTermTable[v].rexpr`.element[`index3` * `SIZE` + `index2`]"); return Ptree::qMake( "for(int `index1` = 0; `index1` < `SIZE`; ++`index1`)\n" " for(int `index2` = 0; `index2` < `SIZE`; ++`index2`){\n" " double `tmp` = 0.0;\n" " for(int `index3` = 0; `index3` < `SIZE`; ++`index3`)\n" " `tmp` += `inlined_expr`;\n" " int `index4` = `index1` * `SIZE` + `index2`;\n" " `object`.element[`index4`]" " = `MakeInlineExpr(index4)``op``tmp`;}\n");}static Ptree* MakeInlineExpr(Ptree* index_var){ int i; Ptree* expr; Ptree* inline_expr = nil; for(i = numOfMulTerms - 1; i >= 0; --i) if(mulTermTable[i].scalar){ char op; if(mulTermTable[i].k > 0) op = '+'; else op = '-'; expr = Ptree::Make("%c %p * %p.element[%p]", op, mulTermTable[i].lexpr, mulTermTable[i].rexpr, index_var); inline_expr = PtreeUtil::Cons(expr, inline_expr); } for(i = numOfTerms - 1; i > 0; --i){ char op; if(termTable[i].k > 0) op = '+'; else op = '-'; expr = Ptree::Make("%c %p.element[%p]", op, termTable[i].expr, index_var); inline_expr = PtreeUtil::Cons(expr, inline_expr); } if(numOfTerms > 0){ if(termTable[0].k > 0) expr = Ptree::Make("%p.element[%p]", termTable[0].expr, index_var); else expr = Ptree::Make("- %p.element[%p]", termTable[0].expr, index_var); inline_expr = PtreeUtil::Cons(expr, inline_expr); } return inline_expr;}static bool ParseTerms(Environment* env, Ptree* expr, int k){ Ptree* lexpr; Ptree* rexpr; if(expr->IsLeaf()){ termTable[numOfTerms].expr = expr; termTable[numOfTerms].k = k; ++numOfTerms; return true; } else if(PtreeUtil::Match(expr, "[%? + %?]", &lexpr, &rexpr)) return ParseTerms(env, lexpr, k) && ParseTerms(env, rexpr, k); else if(PtreeUtil::Match(expr, "[%? - %?]", &lexpr, &rexpr)) return ParseTerms(env, lexpr, k) && ParseTerms(env, rexpr, -k); else if(PtreeUtil::Match(expr, "[( %? )]", &lexpr)) return ParseTerms(env, lexpr, k); else if(PtreeUtil::Match(expr, "[- %?]", &rexpr)) return ParseTerms(env, rexpr, -k); else if(PtreeUtil::Match(expr, "[%? * %?]", &lexpr, &rexpr)) if(lexpr->IsLeaf() && rexpr->IsLeaf()){ mulTermTable[numOfMulTerms].lexpr = lexpr; mulTermTable[numOfMulTerms].rexpr = rexpr; mulTermTable[numOfMulTerms].k = k; mulTermTable[numOfMulTerms].scalar = IsScalarProduct(env, lexpr); ++numOfMulTerms; return true; } else return false; else return false;}// Is the expression P a scalar value?static bool IsScalarProduct(Environment* env, Ptree* p){ TypeInfo t; if(env->Lookup(p, t)) if(t.IsBuiltInType()) return true; return false;}// How many vector products are included in the right-side expression?static int NumOfVectorProducts(){ int n = 0; for(int i = 0; i < numOfMulTerms; ++i) if(!mulTermTable[i].scalar) ++n; return n;}static int IndexOfVectorProducts(){ int n = 0; for(int i = 0; i < numOfMulTerms; ++i) if(!mulTermTable[i].scalar) return i; return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -