📄 kalman_update.m
字号:
function [xnew, Vnew, loglik, VVnew] = kalman_update(A, C, Q, R, y, x, V, varargin)% KALMAN_UPDATE Do a one step update of the Kalman filter% [xnew, Vnew, loglik] = kalman_update(A, C, Q, R, y, x, V, ...)%% INPUTS:% A - the system matrix% C - the observation matrix % Q - the system covariance % R - the observation covariance% y(:) - the observation at time t% x(:) - E[X | y(:, 1:t-1)] prior mean% V(:,:) - Cov[X | y(:, 1:t-1)] prior covariance%% OPTIONAL INPUTS (string/value pairs [default in brackets])% 'initial' - 1 means x and V are taken as initial conditions (so A and Q are ignored) [0]% 'u' - u(:) the control signal at time t [ [] ]% 'B' - the input regression matrix%% OUTPUTS (where X is the hidden state being estimated)% xnew(:) = E[ X | y(:, 1:t) ] % Vnew(:,:) = Var[ X(t) | y(:, 1:t) ]% VVnew(:,:) = Cov[ X(t), X(t-1) | y(:, 1:t) ]% loglik = log P(y(:,t) | y(:,1:t-1)) log-likelihood of innovatio% set default paramsu = [];B = [];initial = 0;args = varargin;for i=1:2:length(args) switch args{i} case 'u', u = args{i+1}; case 'B', B = args{i+1}; case 'initial', initial = args{i+1}; otherwise, error(['unrecognized argument ' args{i}]) endend% xpred(:) = E[X_t+1 | y(:, 1:t)]% Vpred(:,:) = Cov[X_t+1 | y(:, 1:t)]if initial if isempty(u) xpred = x; else xpred = x + B*u; end Vpred = V;else if isempty(u) xpred = A*x; else xpred = A*x + B*u; end Vpred = A*V*A' + Q;ende = y - C*xpred; % error (innovation)n = length(e);ss = length(A);S = C*Vpred*C' + R;Sinv = inv(S);ss = length(V);loglik = gaussian_prob(e, zeros(1,length(e)), S, 1);K = Vpred*C'*Sinv; % Kalman gain matrix% If there is no observation vector, set K = zeros(ss).xnew = xpred + K*e;Vnew = (eye(ss) - K*C)*Vpred;VVnew = (eye(ss) - K*C)*A*V;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -