📄 exc_lbc.c
字号:
Word16 Tmp[SubFrLen] ; Tmp0 = Olp ; for ( i = 0 ; i < SubFrLen ; i ++ ) { Tmp[i] = Src[i] ; Dst[i] = Src[i] ; } while ( Tmp0 < SubFrLen ) { for ( i = (int) Tmp0 ; i < SubFrLen ; i ++ ) { Tmp1 = add( Dst[i], Tmp[i-(int)Tmp0] ) ; Dst[i] = Tmp1 ; } Tmp0 = add( Tmp0, Olp ) ; } return;}/***** Function: Find_Best()**** Description: Fixed codebook search for the high rate encoder.** It performs the quantization of the residual signal.** The excitation made of Np positive or negative pulses** multiplied by a gain and whose positions on the grid are** either all odd or all even, should approximate as best as** possible the residual signal (perceptual criterion).**** Links to text: Section 2.15**** Arguments:**** BESTDEF *Best Parameters of the best excitation model** Word16 *Tv Target vector** Word16 *ImpResp Impulse response of the combined filter** Word16 Np Number of pulses (6 for even subframes; 5 for odd subframes)** Word16 Olp Closed-loop pitch lag of subframe 0 (for subframes 0 & 1)** Closed-loop pitch lag of subframe 2 (for subframes 2 & 3)**** Outputs:**** BESTDEF *Best**** Return value: None***/void Find_Best( BESTDEF *Best, Word16 *Tv, Word16 *ImpResp, Word16 Np,Word16 Olp ){ int i,j,k,l ; BESTDEF Temp ; Word16 Exp ; Word16 MaxAmpId ; Word16 MaxAmp ; Word32 Acc0,Acc1,Acc2 ; Word16 Imr[SubFrLen] ; Word16 OccPos[SubFrLen] ; Word16 ImrCorr[SubFrLen] ; Word32 ErrBlk[SubFrLen] ; Word32 WrkBlk[SubFrLen] ; /* Update Impulse response */ if ( Olp < (Word16) (SubFrLen-2) ) { Temp.UseTrn = (Word16) 1 ; Gen_Trn( Imr, ImpResp, Olp ) ; } else { Temp.UseTrn = (Word16) 0 ; for ( i = 0 ; i < SubFrLen ; i ++ ) Imr[i] = ImpResp[i] ; } /* Scale Imr to avoid overflow */ for ( i = 0 ; i < SubFrLen ; i ++ ) OccPos[i] = shr( Imr[i], (Word16) 1 ) ; /* Compute Imr AutoCorr function */ Acc0 = (Word32) 0 ; for ( i = 0 ; i < SubFrLen ; i ++ ) Acc0 = L_mac( Acc0, OccPos[i], OccPos[i] ) ; Exp = norm_l( Acc0 ) ; Acc0 = L_shl( Acc0, Exp ) ; ImrCorr[0] = round( Acc0 ) ; /* Compute all the other */ for ( i = 1 ; i < SubFrLen ; i ++ ) { Acc0 = (Word32) 0 ; for ( j = i ; j < SubFrLen ; j ++ ) Acc0 = L_mac( Acc0, OccPos[j], OccPos[j-i] ) ; Acc0 = L_shl( Acc0, Exp ) ; ImrCorr[i] = round( Acc0 ) ; } /* Cross correlation with the signal */ Exp = sub( Exp, 4 ) ; for ( i = 0 ; i < SubFrLen ; i ++ ) { Acc0 = (Word32) 0 ; for ( j = i ; j < SubFrLen ; j ++ ) Acc0 = L_mac( Acc0, Tv[j], Imr[j-i] ) ; ErrBlk[i] = L_shl( Acc0, Exp ) ; } /* Search for the best sequence */ for ( k = 0 ; k < Sgrid ; k ++ ) { Temp.GridId = (Word16) k ; /* Find maximum amplitude */ Acc1 = (Word32) 0 ; for ( i = k ; i < SubFrLen ; i += Sgrid ) { Acc0 = L_abs( ErrBlk[i] ) ; if ( Acc0 >= Acc1 ) { Acc1 = Acc0 ; Temp.Ploc[0] = (Word16) i ; } } /* Quantize the maximum amplitude */ Acc2 = Acc1 ; Acc1 = (Word32) 0x40000000L ; MaxAmpId = (Word16) (NumOfGainLev - MlqSteps) ; for ( i = MaxAmpId ; i >= MlqSteps ; i -- ) { Acc0 = L_mult( FcbkGainTable[i], ImrCorr[0] ) ; Acc0 = L_sub( Acc0, Acc2 ) ; Acc0 = L_abs( Acc0 ) ; if ( Acc0 < Acc1 ) { Acc1 = Acc0 ; MaxAmpId = (Word16) i ; } } MaxAmpId -- ; for ( i = 1 ; i <=2*MlqSteps ; i ++ ) { for ( j = k ; j < SubFrLen ; j += Sgrid ) { WrkBlk[j] = ErrBlk[j] ; OccPos[j] = (Word16) 0 ; } Temp.MampId = MaxAmpId - (Word16) MlqSteps + (Word16) i ; MaxAmp = FcbkGainTable[Temp.MampId] ; if ( WrkBlk[Temp.Ploc[0]] >= (Word32) 0 ) Temp.Pamp[0] = MaxAmp ; else Temp.Pamp[0] = negate(MaxAmp) ; OccPos[Temp.Ploc[0]] = (Word16) 1 ; for ( j = 1 ; j < Np ; j ++ ) { Acc1 = (Word32) 0xc0000000L ; for ( l = k ; l < SubFrLen ; l += Sgrid ) { if ( OccPos[l] != (Word16) 0 ) continue ; Acc0 = WrkBlk[l] ; Acc0 = L_msu( Acc0, Temp.Pamp[j-1], ImrCorr[abs_s((Word16)(l-Temp.Ploc[j-1]))] ) ; WrkBlk[l] = Acc0 ; Acc0 = L_abs( Acc0 ) ; if ( Acc0 > Acc1 ) { Acc1 = Acc0 ; Temp.Ploc[j] = (Word16) l ; } } if ( WrkBlk[Temp.Ploc[j]] >= (Word32) 0 ) Temp.Pamp[j] = MaxAmp ; else Temp.Pamp[j] = negate(MaxAmp) ; OccPos[Temp.Ploc[j]] = (Word16) 1 ; } /* Compute error vector */ for ( j = 0 ; j < SubFrLen ; j ++ ) OccPos[j] = (Word16) 0 ; for ( j = 0 ; j < Np ; j ++ ) OccPos[Temp.Ploc[j]] = Temp.Pamp[j] ; for ( l = SubFrLen-1 ; l >= 0 ; l -- ) { Acc0 = (Word32) 0 ; for ( j = 0 ; j <= l ; j ++ ) Acc0 = L_mac( Acc0, OccPos[j], Imr[l-j] ) ; Acc0 = L_shl( Acc0, (Word16) 2 ) ; OccPos[l] = extract_h( Acc0 ) ; } /* Evaluate error */ Acc1 = (Word32) 0 ; for ( j = 0 ; j < SubFrLen ; j ++ ) { Acc1 = L_mac( Acc1, Tv[j], OccPos[j] ) ; Acc0 = L_mult( OccPos[j], OccPos[j] ) ; Acc1 = L_sub( Acc1, L_shr( Acc0, (Word16) 1 ) ) ; } if ( Acc1 > (*Best).MaxErr ) { (*Best).MaxErr = Acc1 ; (*Best).GridId = Temp.GridId ; (*Best).MampId = Temp.MampId ; (*Best).UseTrn = Temp.UseTrn ; for ( j = 0 ; j < Np ; j ++ ) { (*Best).Pamp[j] = Temp.Pamp[j] ; (*Best).Ploc[j] = Temp.Ploc[j] ; } } } } return;}/***** Function: Fcbk_Pack()**** Description: Encoding of the pulse positions and gains for the high** rate case.** Combinatorial encoding is used to transmit the optimal** combination of pulse locations.**** Links to text: Section 2.15**** Arguments:**** Word16 *Dpnt Excitation vector** SFSDEF *Sfs Encoded parameters of the excitation model** BESTDEF *Best Parameters of the best excitation model** Word16 Np Number of pulses (6 for even subframes; 5 for odd subframes)**** Outputs:**** SFSDEF *Sfs Encoded parameters of the excitation model**** Return value: None***/void Fcbk_Pack( Word16 *Dpnt, SFSDEF *Sfs, BESTDEF *Best, Word16 Np ){ int i,j ; /* Code the amplitudes and positions */ j = MaxPulseNum - (int) Np ; (*Sfs).Pamp = (Word16) 0 ; (*Sfs).Ppos = (Word32) 0 ; for ( i = 0 ; i < SubFrLen/Sgrid ; i ++ ) { if ( Dpnt[(int)(*Best).GridId + Sgrid*i] == (Word16) 0 ) (*Sfs).Ppos = L_add( (*Sfs).Ppos, CombinatorialTable[j][i] ) ; else { (*Sfs).Pamp = shl( (*Sfs).Pamp, (Word16) 1 ) ; if ( Dpnt[(int)(*Best).GridId + Sgrid*i] < (Word16) 0 ) (*Sfs).Pamp = add( (*Sfs).Pamp, (Word16) 1 ) ; j ++ ; /* Check for end */ if ( j == MaxPulseNum ) break ; } } (*Sfs).Mamp = (*Best).MampId ; (*Sfs).Grid = (*Best).GridId ; (*Sfs).Tran = (*Best).UseTrn ; return;}/***** Function: Fcbk_Unpk()**** Description: Decoding of the fixed codebook excitation for both rates.** Gains, pulse positions, grid position (odd or even), signs** are decoded and used to reconstruct the excitation.**** Links to text: Section 2.17 & 3.5**** Arguments:**** Word16 *Tv Decoded excitation vector** SFSDEF Sfs Encoded parameters of the excitation (for one subframe)** Word16 Olp Closed loop adaptive pitch lag** Word16 Sfc Subframe index**** Outputs:**** Word16 *Tv Decoded excitation vector**** Return value: None***/void Fcbk_Unpk( Word16 *Tv, SFSDEF Sfs, Word16 Olp, Word16 Sfc ){ int i,j ; Word32 Acc0 ; Word16 Np ; Word16 Tv_tmp[SubFrLen+4]; Word16 acelp_gain, acelp_sign, acelp_shift, acelp_pos; Word16 offset, ipos, T0_acelp, gain_T0; switch(WrkRate) { case Rate63: { Np = Nb_puls[(int)Sfc] ; for ( i = 0 ; i < SubFrLen ; i ++ ) Tv[i] = (Word16) 0 ; if ( Sfs.Ppos >= MaxPosTable[Sfc] ) return ; /* Decode the amplitudes and positions */ j = MaxPulseNum - (int) Np ; Acc0 = Sfs.Ppos ; for ( i = 0 ; i < SubFrLen/Sgrid ; i ++ ) { Acc0 = L_sub( Acc0, CombinatorialTable[j][i] ) ; if ( Acc0 < (Word32) 0 ) { Acc0 = L_add( Acc0, CombinatorialTable[j][i] ) ; j ++ ; if ( (Sfs.Pamp & (1 << (MaxPulseNum-j) )) != (Word16) 0 ) Tv[(int)Sfs.Grid + Sgrid*i] = -FcbkGainTable[Sfs.Mamp] ; else Tv[(int)Sfs.Grid + Sgrid*i] = FcbkGainTable[Sfs.Mamp] ; if ( j == MaxPulseNum ) break ; } } if ( Sfs.Tran == (Word16) 1 ) Gen_Trn( Tv, Tv, Olp ) ; break; } case Rate53: { for ( i = 0 ; i < SubFrLen+4 ; i ++ ) Tv_tmp[i] = (Word16) 0 ; /* decoding gain */ acelp_gain = FcbkGainTable[Sfs.Mamp]; /* decoding grid */ acelp_shift = Sfs.Grid; /* decoding Sign */ acelp_sign = Sfs.Pamp; /* decoding Pos */ acelp_pos = (short) Sfs.Ppos; offset = 0; for(i=0; i<4; i++) { ipos = (acelp_pos & (Word16)0x0007) ; ipos = shl(ipos,3) + acelp_shift + offset; if( (acelp_sign & 1 )== 1) { Tv_tmp[ipos] = acelp_gain; } else { Tv_tmp[ipos] = -acelp_gain; } offset = add(offset,2); acelp_pos = shr(acelp_pos, 3); acelp_sign = shr(acelp_sign,1); } for (i = 0; i < SubFrLen; i++) Tv[i] = Tv_tmp[i]; T0_acelp = search_T0( (Word16) (Olp-1+Sfs.AcLg), Sfs.AcGn, &gain_T0); if(T0_acelp <SubFrLen-2) { /* code[i] += 0.8 * code[i-Olp] */ for (i = T0_acelp ; i < SubFrLen; i++) Tv[i] = add(Tv[i], mult(Tv[i-T0_acelp ], gain_T0)); } break; } } return;}/***** Function: Find_Acbk()**** Description: Computation of adaptive codebook contribution in** closed-loop around the open-loop pitch lag (subframes 0 & 2)** around the previous subframe closed-loop pitch lag** (subframes 1 & 3). For subframes 0 & 2, the pitch lag is** encoded whereas for subframes 1 & 3, only the difference** with the previous value is encoded (-1, 0, +1 or +2).** The pitch predictor gains are quantized using one of the two** codebooks (85 entries or 170 entries) depending on the** rate and on the pitch lag value.** Finally, the contribution of the pitch predictor is decoded** and subtracted to obtain the residual signal.**** Links to text: Section 2.14**** Arguments:**** Word16 *Tv Target vector** Word16 *ImpResp Impulse response of the combined filter** Word16 *PrevExc Previous excitation vector** LINEDEF *Line Contains pitch related parameters (open/closed loop lag, gain)** Word16 Sfc Subframe index**** Outputs:**** Word16 *Tv Residual vector** LINEDEF *Line Contains pitch related parameters (closed loop lag, gain)**** Return value: None***/void Find_Acbk( Word16 *Tv, Word16 *ImpResp, Word16 *PrevExc, LINEDEF*Line, Word16 Sfc ){ int i,j,k,l ; Word32 Acc0,Acc1 ; Word16 RezBuf[SubFrLen+ClPitchOrd-1] ; Word16 FltBuf[ClPitchOrd][SubFrLen] ; Word32 CorBuf[4*(2*ClPitchOrd + ClPitchOrd*(ClPitchOrd-1)/2)] ; Word32 *lPnt ; Word16 CorVct[4*(2*ClPitchOrd + ClPitchOrd*(ClPitchOrd-1)/2)] ; Word16 *sPnt ; Word16 Olp ; Word16 Lid ; Word16 Gid ; Word16 Hb ; Word16 Exp ; Word16 Bound[2] ; Word16 Lag1, Lag2; Word16 off_filt; /* Init constants */ Olp = (*Line).Olp[shr(Sfc, (Word16) 1)] ; Lid = (Word16) Pstep ; Gid = (Word16) 0 ; Hb = (Word16) 3 + (Sfc & (Word16) 1 ) ; /* For even frames only */ if ( (Sfc & (Word16)1) == (Word16) 0 ) { if ( Olp == (Word16) PitchMin ) Olp = add( Olp, (Word16) 1 ) ; if ( Olp > (Word16) (PitchMax-5) ) Olp = (Word16)(PitchMax-5) ; } lPnt = CorBuf ; for ( k = 0 ; k < (int) Hb ; k ++ ) { /* Get residual from the excitation buffer */ Get_Rez( RezBuf, PrevExc, (Word16)(Olp-(Word16)Pstep+k) ) ; /* Filter the last one using the impulse response */ for ( i = 0 ; i < SubFrLen ; i ++ ) { Acc0 = (Word32) 0 ; for ( j = 0 ; j <= i ; j ++ ) Acc0 = L_mac( Acc0, RezBuf[ClPitchOrd-1+j], ImpResp[i-j] ) ; FltBuf[ClPitchOrd-1][i] = round( Acc0 ) ; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -