📄 differentiator.m
字号:
function [DH,DW] = differentiator(N, F, GF, W, Fsamp, delay)
%DIFFERENTIATOR Desired frequency response for differentiator filters.
% CREMEZ(N,F,'differentiator', ...) designs a linear-phase
% differentiator filter response using CREMEZ.
%
% CREMEZ(N,F,{'differentiator', Fs}, ...) specifies the sample rate
% Fs of the filter in Hertz. By default, Fs=1.
%
% CREMEZ(N,F,{'differentiator', Fs, D}, ...) specifies group-delay
% offset D such that the filter response will have a group delay of
% N/2 + D in units of the sample interval, where N is the filter
% order. Negative values create less delay, while positive values
% create more delay. By default, D=0.
%
% Note that DC must be in a transition band, and band weighting is
% computed to be inversely proportional to frequency.
%
% The symmetry option SYM defaults to 'odd' if unspecified in the
% call to CREMEZ, if no negative band edge frequencies are
% specified in F.
%
% EXAMPLE: Derivative of a ramp
% Fs = 10; % Sample rate
% t = 0:1/Fs:100; % Sample times
% x = 1:length(t); % x(t) has slope = 10
% b = cremez(31,[.1 .9],{'differentiator',Fs});
% y = filter(b,1,x); % Compute derivative
% slope = mean(y(32:end))
%
% See also CREMEZ.
% Authors: L. Karam, J. McClellan
% Revised: October 1996, D. Orofino
%
% Copyright (c) 1988-98 by The MathWorks, Inc.
% $Revision: 1.7 $ $Date: 1997/12/02 20:41:53 $
% [DH,DW]=DIFFERENTIATOR(M,F,F,W,FSAMP,DELAY)
% N: filter order (length minus one)
% F: vector of band edges
% GF: vector of frequencies at which to evaluate
% W: vector of weights, one per band
% FSAMP: sampling frequency used to scale DH(f)
% DELAY: negative slope of the phase.
% N/2=(L-1)/2 for exact linear phase.
%
% DH: vector of desired filter response (mag & phase)
% DW: vector of weights (positive)
%
% NOTE: DH(f) and DW(f) are specified as functions of frequency
% Support query by CREMEZ for the default symmetry option:
if nargin==2,
% Return symmetry default:
if strcmp(N,'defaults'),
% Second arg (F) is cell-array of args passed later to function:
num_args = length(F);
% Get the delay value:
if num_args<6, delay=0; else delay=F{6}; end
% Use delay arg to base symmetry decision:
if isequal(delay,0), DH='odd'; else DH='real'; end
return
end
end
% Standard call:
error(nargchk(4,6,nargin));
if nargin<5, Fsamp = 1; end
if nargin<6, delay = 0; end
delay = delay + N/2; % adjust for linear phase
if Fsamp<=0,
error('Sample rate Fs must be > 0');
end
Le = length(F);
if Le==2,
if any(F <= 0),
error(['Band edges must be strictly positive for ' ...
'single-band Differentiator designs']);
end
elseif Le == 4,
if F(2)*F(3) > 0,
error(['Transition band must include DC for 2-band ' ...
'Differentiator designs']);
end
else
error('There must be either 2 or 4 band edges for differentiator designs.')
end
mags = pi*Fsamp*F;
DH = table1([F(:), mags(:)], GF) .* 1i .* exp(-1i*pi*GF*delay);
jkl = find( (GF >= F(1)) & (GF <= F(2)) );
DW = W(1)./GF(jkl);
for jj = 3:2:Le,
jkl = find( (GF > F(jj)) & (GF <= F(jj+1)) );
DW = [ DW; W(jj)./GF(jkl) ];
end
% end of differentiator.m
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -