📄 hilbfilt.m
字号:
function [DH,DW] = hilbfilt(N, F, GF, W, delay)
%HILBFILT Desired frequency response for Hilbert filters.
% CREMEZ(N,F,'hilbfilt', ...) designs a linear-phase hilbert filter
% response using CREMEZ.
%
% CREMEZ(N,F,{'hilbfilt', D}, ...) specifies group-delay offset D such
% that the filter response will have a group delay of N/2 + D in
% units of the sample interval, where N is the filter order.
% Negative values create less delay, while positive values create
% more delay. By default, D=0.
%
% Note that DC must be in a transition band.
%
% The symmetry option SYM defaults to 'odd' if unspecified in the
% call to CREMEZ, if no negative band edge frequencies are
% specified in F.
%
% EXAMPLE: Determine analytic envelope of a signal
% N = 32; t = (0:200)';
% env = sin(pi*t/200); % Signal envelope
% x = sin(2*pi*0.3*t) .* env; % Test signal
% b = cremez(32,[.1 .9],'hilbfilt');
% pad = zeros(N/2,1); % Delay compensation
% y = filter(b,1,[x;pad]); % Hilbert transform
% as = [pad;x] + 1i*y; % Analytic signal
% ae = abs(as(N/2+1:end)); % Analytic envelope
% plot(t,ae, t,env);
%
% See also CREMEZ.
% Authors: L. Karam, J. McClellan
% Revised: October 1996, D. Orofino
%
% Copyright (c) 1988-98 by The MathWorks, Inc.
% $Revision: 1.9 $ $Date: 1997/12/02 20:47:53 $
% [DH,DW]=HILBFILT(N,F,GF,W,DELAY)
% N: filter order (length minus one)
% F: vector of band edges
% GF: vector of frequencies at which to evaluate
% W: vector of weights, one per band
% DELAY: negative slope of the phase.
% N/2=(L-1)/2 for exact linear phase.
%
% DH: vector of desired filter response (mag & phase)
% DW: vector of weights (positive)
%
% NOTE: DH(f) and DW(f) are specified as functions of frequency
% Support query by CREMEZ for the default symmetry option:
if nargin==2,
% Return symmetry default:
if strcmp(N,'defaults'),
% Second arg (F) is cell-array of args passed later to function:
num_args = length(F);
% Get the delay value:
if num_args<5, delay=0; else delay=F{5}; end
% Use delay arg to base symmetry decision:
if isequal(delay,0), DH='odd'; else DH='real'; end
return
end
end
% Standard call:
error(nargchk(4,5,nargin));
if nargin < 5, delay = 0; end
delay = delay + N/2; % adjust for linear phase
Le = length(F);
if Le == 2,
if any(F <= 0),
error(['Band edges must be strictly positive for ' ...
'single-band Hilbert designs']);
end
elseif Le == 4,
if F(2)*F(3) > 0,
error(['Transition band must include DC for two-band' ...
'Hilbert designs']);
end
else
error('There must be either 2 or 4 band edges for Hilbert designs.')
end
W = [1;1] * (W(:).'); W = W(:);
mags = ones(size(W));
DH = table1([F(:), mags], GF) .* 1i .* exp(-1i*pi*GF*delay);
DW = table1([F(:), W], GF);
% end of hilbfilt.m
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -