📄 cheb2ord.m
字号:
function [order,wn] = cheb2ord(wp,ws,rp,rs,opt)
%CHEB2ORD Chebyshev type II filter order selection.
% [N, Wn] = CHEB2ORD(Wp, Ws, Rp, Rs) returns the order N of the lowest
% order digital Chebyshev Type II filter that loses no more than Rp dB
% in the passband and has at least Rs dB of attenuation in the stopband.
% Wp and Ws are the passband and stopband edge frequencies, normalized
% from 0 to 1 (where 1 corresponds to pi radians). For example,
% Lowpass: Wp = .1, Ws = .2
% Highpass: Wp = .2, Ws = .1
% Bandpass: Wp = [.1 .8], Ws = [.2 .7]
% Bandstop: Wp = [.2 .7], Ws = [.1 .8]
% CHEB2ORD also returns Wn, the Chebyshev natural frequency to use with
% CHEBY2 to achieve the specifications.
%
% [N, Wn] = CHEB1ORD(Wp, Ws, Rp, Rs, 's') does the computation for an
% analog filter, in which case Wp and Ws are in radians/second.
%
% See also CHEBY2, BUTTORD, ELLIPORD, CHEB1ORD.
% Reference: Rabiner and Gold, p 241.
% Author(s): L. Shure, 6-9-88
% T. Krauss, 11-18-92, revised
% Copyright (c) 1988-98 by The MathWorks, Inc.
% $Revision: 1.12 $ $Date: 1997/11/26 20:12:57 $
if nargin == 4
opt = 'z';
elseif nargin == 5
if ~strcmp(opt,'z') & ~strcmp(opt,'s')
error('Invalid option for final argument.');
end
end
np1 = length(wp);
ns1 = length(ws);
if (np1 ~= ns1)
error('The frequency vectors must both be the same length.')
end
% figure out filter type
ftype = 2*(np1 - 1);
if wp(1) < ws(1)
ftype = ftype + 1; % low (1) or reject (3)
else
ftype = ftype + 2; % high (2) or pass (4)
end
% first, prewarp frequencies from digital (unit circle) to analog (imag. axis):
if strcmp(opt,'z') % digital
WPA=tan(pi*wp/2);
WSA=tan(pi*ws/2);
else % don't have to if analog already
WPA=wp;
WSA=ws;
end
% next, transform to low pass prototype with passband edge of 1 and stopband
% edges determined by the following: (see Rabiner and Gold, p.258)
if ftype == 1 % low
WA=WSA/WPA;
elseif ftype == 2 % high
WA=WPA/WSA;
elseif ftype == 3 % stop
fo = foptions;
wp1 = fmin('bscost',WPA(1),WSA(1)-1e-12,fo,1,...
WPA,WSA,rs,rp,'cheby');
WPA(1) = wp1;
wp2 = fmin('bscost',WSA(2)+1e-12,WPA(2),fo,2,...
WPA,WSA,rs,rp,'cheby');
WPA(2) = wp2;
WA=(WSA*(WPA(1)-WPA(2)))./(WSA.^2 - WPA(1)*WPA(2));
elseif ftype == 4 % pass
WA=(WSA.^2 - WPA(1)*WPA(2))./(WSA*(WPA(1)-WPA(2)));
end
% find the minimum order cheby. type 2 filter to meet the more demanding spec:
WA=min(abs(WA));
order=ceil(acosh(sqrt((10^(.1*abs(rs))-1)/(10^(.1*abs(rp))-1)))/acosh(WA));
% ref: M.E. Van Valkenburg, "Analog Filter Design", p.232, eqn 8.39
% next find the frequency "new_wp" at which the response of an analog low-pass
% prototype is exactly -rp dB. The prototype is the one for which the beginning
% of the stop-band is at frequency 1.
% (new_wp will be less than 1):
new_wp=1/cosh(1/order*acosh(sqrt((10^(.1*abs(rs)) - 1)/(10^(.1*abs(rp)) - 1))));
% Now convert the stop band frequency back from lowpass prototype
% to the original analog filter.
% Here we use the mapping which maps the frequency "new_wp" to the original WP,
% to map the (+/-)1 frequency to WN (WN will be between WP and WS):
if ftype == 1 % low
WN=WPA/new_wp;
elseif ftype == 2 % high
WN=WPA*new_wp;
elseif ftype == 3 % stop
WN=(WPA(1)-WPA(2))*new_wp/2 + ...
sqrt( (WPA(2)-WPA(1))^2*new_wp^2/4 + WPA(1)*WPA(2));
WN(2)=WPA(1)*WPA(2)/WN(1);
elseif ftype == 4 % pass
WN=(WPA(1)-WPA(2))/(2*new_wp) + ...
sqrt( (WPA(2)-WPA(1))^2/(4*new_wp^2) + WPA(1)*WPA(2));
WN(2)=WPA(1)*WPA(2)/WN(1);
% WA=(WP.^2 - WN(1)*WN(2))./(WP*(WN(2)-WN(1))) <--- to check, this should be
% -/+ new_wp
end
% finally, transform frequencies from analog to digital if necessary:
if strcmp(opt,'z') % digital
wn=(2/pi)*atan(WN); % bilinear transform
else
wn=WN;
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -