📄 des.java
字号:
/* for D bits (numbered as per FIPS 46) 1 2 3 4 5 6 */ 0x00000000,0x10000000,0x00010000,0x10010000, 0x00000004,0x10000004,0x00010004,0x10010004, 0x20000000,0x30000000,0x20010000,0x30010000, 0x20000004,0x30000004,0x20010004,0x30010004, 0x00100000,0x10100000,0x00110000,0x10110000, 0x00100004,0x10100004,0x00110004,0x10110004, 0x20100000,0x30100000,0x20110000,0x30110000, 0x20100004,0x30100004,0x20110004,0x30110004, 0x00001000,0x10001000,0x00011000,0x10011000, 0x00001004,0x10001004,0x00011004,0x10011004, 0x20001000,0x30001000,0x20011000,0x30011000, 0x20001004,0x30001004,0x20011004,0x30011004, 0x00101000,0x10101000,0x00111000,0x10111000, 0x00101004,0x10101004,0x00111004,0x10111004, 0x20101000,0x30101000,0x20111000,0x30111000, 0x20101004,0x30101004,0x20111004,0x30111004, },{ /* for D bits (numbered as per FIPS 46) 8 9 11 12 13 14 */ 0x00000000,0x08000000,0x00000008,0x08000008, 0x00000400,0x08000400,0x00000408,0x08000408, 0x00020000,0x08020000,0x00020008,0x08020008, 0x00020400,0x08020400,0x00020408,0x08020408, 0x00000001,0x08000001,0x00000009,0x08000009, 0x00000401,0x08000401,0x00000409,0x08000409, 0x00020001,0x08020001,0x00020009,0x08020009, 0x00020401,0x08020401,0x00020409,0x08020409, 0x02000000,0x0A000000,0x02000008,0x0A000008, 0x02000400,0x0A000400,0x02000408,0x0A000408, 0x02020000,0x0A020000,0x02020008,0x0A020008, 0x02020400,0x0A020400,0x02020408,0x0A020408, 0x02000001,0x0A000001,0x02000009,0x0A000009, 0x02000401,0x0A000401,0x02000409,0x0A000409, 0x02020001,0x0A020001,0x02020009,0x0A020009, 0x02020401,0x0A020401,0x02020409,0x0A020409, },{ /* for D bits (numbered as per FIPS 46) 16 17 18 19 20 21 */ 0x00000000,0x00000100,0x00080000,0x00080100, 0x01000000,0x01000100,0x01080000,0x01080100, 0x00000010,0x00000110,0x00080010,0x00080110, 0x01000010,0x01000110,0x01080010,0x01080110, 0x00200000,0x00200100,0x00280000,0x00280100, 0x01200000,0x01200100,0x01280000,0x01280100, 0x00200010,0x00200110,0x00280010,0x00280110, 0x01200010,0x01200110,0x01280010,0x01280110, 0x00000200,0x00000300,0x00080200,0x00080300, 0x01000200,0x01000300,0x01080200,0x01080300, 0x00000210,0x00000310,0x00080210,0x00080310, 0x01000210,0x01000310,0x01080210,0x01080310, 0x00200200,0x00200300,0x00280200,0x00280300, 0x01200200,0x01200300,0x01280200,0x01280300, 0x00200210,0x00200310,0x00280210,0x00280310, 0x01200210,0x01200310,0x01280210,0x01280310, },{ /* for D bits (numbered as per FIPS 46) 22 23 24 25 27 28 */ 0x00000000,0x04000000,0x00040000,0x04040000, 0x00000002,0x04000002,0x00040002,0x04040002, 0x00002000,0x04002000,0x00042000,0x04042000, 0x00002002,0x04002002,0x00042002,0x04042002, 0x00000020,0x04000020,0x00040020,0x04040020, 0x00000022,0x04000022,0x00040022,0x04040022, 0x00002020,0x04002020,0x00042020,0x04042020, 0x00002022,0x04002022,0x00042022,0x04042022, 0x00000800,0x04000800,0x00040800,0x04040800, 0x00000802,0x04000802,0x00040802,0x04040802, 0x00002800,0x04002800,0x00042800,0x04042800, 0x00002802,0x04002802,0x00042802,0x04042802, 0x00000820,0x04000820,0x00040820,0x04040820, 0x00000822,0x04000822,0x00040822,0x04040822, 0x00002820,0x04002820,0x00042820,0x04042820, 0x00002822,0x04002822,0x00042822,0x04042822, } }; private static final byte weak_keys[][] = { /* weak keys */ {(byte)0x01,(byte)0x01,(byte)0x01,(byte)0x01, (byte)0x01,(byte)0x01,(byte)0x01,(byte)0x01}, {(byte)0xFE,(byte)0xFE,(byte)0xFE,(byte)0xFE, (byte)0xFE,(byte)0xFE,(byte)0xFE,(byte)0xFE}, {(byte)0x1F,(byte)0x1F,(byte)0x1F,(byte)0x1F, (byte)0x1F,(byte)0x1F,(byte)0x1F,(byte)0x1F}, {(byte)0xE0,(byte)0xE0,(byte)0xE0,(byte)0xE0, (byte)0xE0,(byte)0xE0,(byte)0xE0,(byte)0xE0}, /* semi-weak keys */ {(byte)0x01,(byte)0xFE,(byte)0x01,(byte)0xFE, (byte)0x01,(byte)0xFE,(byte)0x01,(byte)0xFE}, {(byte)0xFE,(byte)0x01,(byte)0xFE,(byte)0x01, (byte)0xFE,(byte)0x01,(byte)0xFE,(byte)0x01}, {(byte)0x1F,(byte)0xE0,(byte)0x1F,(byte)0xE0, (byte)0x0E,(byte)0xF1,(byte)0x0E,(byte)0xF1}, {(byte)0xE0,(byte)0x1F,(byte)0xE0,(byte)0x1F, (byte)0xF1,(byte)0x0E,(byte)0xF1,(byte)0x0E}, {(byte)0x01,(byte)0xE0,(byte)0x01,(byte)0xE0, (byte)0x01,(byte)0xF1,(byte)0x01,(byte)0xF1}, {(byte)0xE0,(byte)0x01,(byte)0xE0,(byte)0x01, (byte)0xF1,(byte)0x01,(byte)0xF1,(byte)0x01}, {(byte)0x1F,(byte)0xFE,(byte)0x1F,(byte)0xFE, (byte)0x0E,(byte)0xFE,(byte)0x0E,(byte)0xFE}, {(byte)0xFE,(byte)0x1F,(byte)0xFE,(byte)0x1F, (byte)0xFE,(byte)0x0E,(byte)0xFE,(byte)0x0E}, {(byte)0x01,(byte)0x1F,(byte)0x01,(byte)0x1F, (byte)0x01,(byte)0x0E,(byte)0x01,(byte)0x0E}, {(byte)0x1F,(byte)0x01,(byte)0x1F,(byte)0x01, (byte)0x0E,(byte)0x01,(byte)0x0E,(byte)0x01}, {(byte)0xE0,(byte)0xFE,(byte)0xE0,(byte)0xFE, (byte)0xF1,(byte)0xFE,(byte)0xF1,(byte)0xFE}, {(byte)0xFE,(byte)0xE0,(byte)0xFE,(byte)0xE0, (byte)0xFE,(byte)0xF1,(byte)0xFE,(byte)0xF1} }; private boolean check_weak_key(byte [] key) { for (int i= 0; i < weak_keys.length; i++) { int j; for(j = 0; j < 8; j++) { if(key[j] != weak_keys[i][j]) break; } if(j == 8) { /* * We got a match. */ is_weak_key_ = true; return true; } } is_weak_key_ = false; return false; } private boolean check_parity(byte [] key) { int i; for (i=0; i<8; i++) { if(key[i] != odd_parity_array[(int)(key[i]&0xff)]) { is_parity_ok_ = false; return false; } } is_parity_ok_ = true; return true; } /** * DesKey constructor from a String object. * Take a string and convert it into a 128 * byte key schedule. Do so by doing a des cypher-block * chaining checksum operation on the string and using * the output as the key. * * @param str String object. * @param check_key boolean. If true checks for weak keys. * */ public void DesKey(String str, boolean check_key) { int i; byte j; byte [] key = new byte[8]; byte [] keystr = new byte[str.length()]; for(i = 0; i < 8; i++) { key[i] = 0; } for (i=0; i<str.length(); i++) { keystr[i] = j = (byte)str.charAt(i); if ((i%16) < 8) { key[i%8]^=(j<<1); } else { /* Reverse the bit order */ j=(byte)(((j<<4)&0xf0)|((j>>>4)&0x0f)); j=(byte)(((j<<2)&0xcc)|((j>>>2)&0x33)); j=(byte)(((j<<1)&0xaa)|((j>>>1)&0x55)); key[7-(i%8)]^=j; } } set_odd_parity(key); set_key_sced(key, false); Des des = new Des(this); /* * Now do the des cbc-checksum to get the 8 byte remainder. * This will be the real key. */ des.cbc_cksum(keystr, 0, keystr.length, key, 0, key); set_odd_parity(key); set_key_sced(key, check_key); } /** * DesKey constructor from an 8 byte array. * * @param key byte [] array, length 8. * @param check_key boolean. If true checks for weak keys. * */ public DesKey(byte [] key, boolean check_key) { set_odd_parity(key); set_key_sced(key, check_key); } /** * Add parity bits to an 8 byte array. Use this * before calling the DesKey constructor with this * array. * * @param key byte [] array, length 8. */ public static void set_odd_parity(byte [] key) { int i; for (i=0; i<8; i++) { key[i]= DesKey.odd_parity_array[(int)(key[i]&0xff)]; } } /* * Take an 8 byte key and transform it into a des * key schedule. */ private void set_key_sced(byte [] key, boolean check_key) { if (check_key == true) { /* * Just exit if we fail tests - caller will check. */ if(check_parity(key) == false) { return; } if(check_weak_key(key) == true) { return; } } /* * Convert key to two 32 bit ints. */ int key_c0 = Int32Manipulator.bytes_to_int(key, 0); int key_d0 = Int32Manipulator.bytes_to_int(key, 4); int tmp = 0; int [] ref_to_c0 = new int[1]; int [] ref_to_d0 = new int[1]; ref_to_c0[0] = key_c0; ref_to_d0[0] = key_d0; Int32Manipulator.PERM_OP (ref_to_d0, ref_to_c0, tmp, 4, 0x0f0f0f0f); Int32Manipulator.HPERM_OP(ref_to_c0, tmp, -2, 0xcccc0000); Int32Manipulator.HPERM_OP(ref_to_d0, tmp, -2, 0xcccc0000); Int32Manipulator.PERM_OP (ref_to_d0, ref_to_c0, tmp, 1, 0x55555555); Int32Manipulator.PERM_OP (ref_to_c0, ref_to_d0, tmp, 8, 0x00ff00ff); Int32Manipulator.PERM_OP (ref_to_d0, ref_to_c0, tmp, 1, 0x55555555); /* Convert back to ordinary ints */ key_c0 = ref_to_c0[0]; key_d0 = ref_to_d0[0]; key_d0 = (((key_d0 & 0x000000ff)<<16)|(key_d0 & 0x0000ff00)| ((key_d0 & 0x00ff0000)>>>16)| ((key_c0 & 0xf0000000)>>>4)); key_c0 &= 0x0fffffff; int i, tmp1; for (i=0; i < 16; i++) { if (shifts2[i] == true) { key_c0 = ((key_c0>>>2)|(key_c0<<26)); key_d0 = ((key_d0>>>2)|(key_d0<<26)); } else { key_c0 = ((key_c0>>>1)|(key_c0<<27)); key_d0 = ((key_d0>>>1)|(key_d0<<27)); } key_c0 &= 0x0fffffff; key_d0 &= 0x0fffffff; tmp1 = des_skb[0][ (key_c0 )&0x3f ]| des_skb[1][((key_c0>>> 6)&0x03)|((key_c0>>> 7)&0x3c)]| des_skb[2][((key_c0>>>13)&0x0f)|((key_c0>>>14)&0x30)]| des_skb[3][((key_c0>>>20)&0x01)|((key_c0>>>21)&0x06) | ((key_c0>>>22)&0x38)]; tmp = des_skb[4][ (key_d0 )&0x3f ]| des_skb[5][((key_d0>>> 7)&0x03)|((key_d0>> 8)&0x3c)]| des_skb[6][ (key_d0>>>15)&0x3f ]| des_skb[7][((key_d0>>>21)&0x0f)|((key_d0>>>22)&0x30)]; /* table contained 0213 4657 */ Int32Manipulator.set_int(keysced_, i*8, (tmp<<16)|(tmp1&0x0000ffff)); tmp1 = ((tmp1>>>16)|(tmp&0xffff0000)); tmp1 = (tmp1 <<4)|(tmp1>>>28); Int32Manipulator.set_int(keysced_, i*8 + 4, tmp1); } }}/** * * Interface that both Des and TripleDes implement. * Created so code can be written independently of whether * Des or TripleDes is being used. * * Written by Jeremy Allison (jra@cygnus.com). */interface DesCrypt { /** * Do the ecb (Encrypt/Decrypt 8 bytes electronic code book) * mode. Encrypts 8 bytes starting at offset input_start in * byte array input and writes them out at offset output_start in * byte array output. * * @param input Input byte [] array. * @param input_start Offset into input to start encryption. * @param output Output byte [] array. * @param output_start Offset into output to place result. * @param encrypt Pass Des.ENCRYPT to encrypt, Des.DECRYPT to * decrypt. * */ void ecb_encrypt(byte [] input, int input_start, byte [] output, int output_start, boolean encrypt); /** * Do the cbc (Cypher block chaining mode) * encrypt/decrypt. This updates the ivec array, and is equivalent * to the des_ncbc_encrypt in the C library. * * @param input Input byte [] array. * @param input_start Offset into input to start encryption. * @param length Number of bytes to encrypt. * @param output Output byte [] array. * @param output_start Offset into output to place result. * @param ivec Initialization vector. A byte [] array of length 8. Updated on exit. * @param encrypt Pass Des.ENCRYPT to encrypt, Des.DECRYPT to * decrypt. */ void cbc_encrypt(byte [] input, int input_start, int length, byte [] output, int output_start, byte [] ivec, boolean encrypt); /** * Do the CFB mode with 64 bit feedback. Used to encrypt/decrypt * arbitrary numbers of bytes. To use this initialize num[0] to zero * and set input_start to the correct offset into input, and length to * the number of bytes following that offset that you wish to encrypt * before calling. * * @param input Input byte [] array. * @param input_start Offset into input to start encryption. * @param length Number of bytes to encrypt. * @param output Output byte [] array. * @param output_start Offset into output to place result. * @param ivec Initialization vector. A byte [] array of length 8. Updated on exit. * @param num Reference to an int used to keep track of 'how far' we are though ivec. Updated on exit. * @param encrypt Pass Des.ENCRYPT to encrypt, Des.DECRYPT to * decrypt. */ void cfb64_encrypt(byte [] input, int input_start, int length, byte [] output, int output_start, byte [] ivec, int [] num, boolean encrypt); /** * Do the OFB mode with 64 bit feedback. Used to encrypt/decrypt * arbitrary numbers of bytes. To use this initialize num[0] to zero * and set input_start to the correct offset into input, and length to * the number of bytes following that offset that you wish to encrypt * before calling. * * @param input Input byte [] array.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -