📄 ex5_3.m
字号:
%
% This file generates the graph for Example 5.3
% In this example we compare the frequency response of
% three types of filters: Chebyshev with 3dB ripples,
% Butterworth, and linear phase design
%
% Copyright (c) 1999 by P.Bretchko and R.Ludwig
% "RF Circuit Design: Theory and Practice"
%
clear all; % clear all variables
close all; % close all opened graphs
figure; % open new graph
% define normalized frequency range
w=0.01:0.01:1.5;
% define L and C parameters for the lowpass filter prototypes
L1=[1 1.255 3.3487];
C1=[2 0.5528 0.7117];
L2=[1 0.1922 3.3487];
% | | |
% | | +------ 3dB Chebyshev filter
% | |
% | +------------- linear phase filter
% |
% +---------------- Butterworth filter
ZL=1; % load impedance
V1=1; % input voltage amplitude
IL=zeros([3 length(w)]);
% lowpass filter prototype
for k=1:3
ZL1=j*w*L1(k);
ZC1=1./(j*w*C1(k));
ZL2=j*w*L2(k);
Z1=ZL2+ZL;
Z2=Z1.*ZC1./(Z1+ZC1);
Z3=1+Z2+ZL1;
% compute voltages using the voltage divider rule
V_internal=Z2./Z3*V1;
V2=ZL./Z1.*V_internal;
Gain=2*V2/V1;
IL(k,:)=-20*log10(abs(Gain)); % insertion loss
end;
plot(w,IL(1,:),w,IL(2,:),w,IL(3,:));
axis([0 1.5 0 12]);
title('Frequency response of three types of filters');
xlabel('Normalized frequency \Omega');
ylabel('Insertion loss, dB');
legend('Butterworth', 'Linear phase', '3dB Chebyshev',2);
hold on;
plot([0 1],[3 3],'b:',[1 1],[0 3],'b:');
text(0.1,3.2,'{\bf3db}');
%print -deps 'fig5_23.eps'
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -