📄 ex7_1.m
字号:
%
% This program computes the small-signal impedance of
% a Si-based pn-junction diode
%
% Copyright (c) 1999 by P.Bretchko and R.Ludwig
% "RF Circuit Design: Theory and Practice"
%
close all; % close all opened graphs
clear all; % clear all variables
figure; % open new graph
% define problem parameters
TT=500e-12; % transit time
T0=300; % temperature
Is0=5e-15; % reverse saturation current at 300K
Rs=1.5; % series resistance
nn=1.16; % emission coefficient
% parameters needed to describe temperature behavior of
% the band-gap energy in Si
alpha=7.02e-4;
beta=1108;
Wg0=1.16;
pt=3;
% quiescent current
Iq=50e-3;
% frequency range 10MHz to 1GHz
f_min=10e6; % lower limit
f_max=1e9; % upper limit
N=300; % number of points in the graph
f=f_min*((f_max/f_min).^((0:N)/N)); % compute frequency points on log scale
% temperatures for which analysis will be performed
T_points=[250 300 350 400];
% define physical constants
q=1.60218e-19; % electron charge
k=1.38066e-23; % Boltzmann's constant
colormap(lines);
color_map=colormap;
colormap('default');
legend_string=' ';
for n=1:length(T_points)
T=T_points(n);
s=sprintf('T=%.f\n',T);
Vt=k*T/q;
Wg=Wg0-alpha*T^2/(beta+T);
s=sprintf('%s Wg(T)=%f\n',s,Wg);
Is=Is0*(T/T0)^(pt/nn)*exp(-Wg/Vt*(1-T/T0));
s=sprintf('%s Is(T)=%e\n',s,Is);
Vq=nn*Vt*log(1+Iq/Is);
s=sprintf('%s Vq(T)=%f\n',s,Vq);
Rd=nn*Vt/Iq;
s=sprintf('%s Rd(T)=%f\n',s,Rd);
Cd=Is*TT/nn/Vt*exp(Vq/nn/Vt);
s=sprintf('%s Cd(T)=%fpF\n',s,Cd/1e-12)
Zc=1./(j*2*pi*f*Cd);
Zin=Rs+Rd*Zc./(Rd+Zc);
legend_string=strcat(legend_string,strcat(sprintf('T=%d',T),'{\circ}K')');
semilogx(f/1e6,abs(Zin),'color',color_map(n,:));
hold on;
end;
axis([10 1000 1.5 2.4]);
legend(legend_string',1);
title('Frequency behavior of small-signal diode model');
xlabel('Frequency {\itf}, MHz');
ylabel('Impedance |Z|, \Omega');
%print -deps 'fig7_3.eps'
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -